Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
AJMB-Avicenna Journal of Medical Biotechnology. 2018; 10 (2): 83-92
in English | IMEMR | ID: emr-192949

ABSTRACT

Background: Alzheimer's Disease [AD] is the most prevalent cause of memory impairment in the elderly population, but the diagnosis and treatment of the disease is still challenging. Lavender aqueous extract has recently been shown to have the potential in clearing Amyloid-beta plaques from AD rat hippocampus. To elucidate the therapeutic mechanisms of lavender, serum metabolic fingerprint of Abeta-induced rat Alzheimer's models was investigated through nuclear magnetic resonance spectrometry


Methods: For the establishment of rat Alzheimer's models, 10 microg of Amyloid beta 1-42 was injected to male Wistar rats. The lavender aqueous extract was injected 20 days after the establishment of the models, once daily for 20 days. Serum samples were collected and metabolite fingerprints were obtained using 500 MHz 1H-NMR spectrometry, following multivariate statistical analyses. The resulted metabolites were then subjected to pathway analysis tools to reveal metabolic pathways affected by the lavender extract treatment


Results: Levels of 10 metabolite markers including alanine, glutamine, serine, isoleucine, valine, carnitine, isobutyrate, pantothenate, glucose and asparagine were reversed nearly to control values after treatment with lavender extract. The results revealed that the most significantly affected pathways during treatment with lavender extract belonged to carbohydrate and amino acid metabolism, including pantothenate and CoA metabolism, glyoxilate and dicarboxylate metabolism, alanine, aspartate and glutamate metabolism, cysteine and methionine metabolism


Conclusion: As lavender extract reversed the direction of changes of some metabolites involved in AD pathogenesis, it was concluded that the extract might play a role in the disease improvement and serve as a potential therapeutic option for the treatment of AD. Moreover, the metabolites which were found in AD rats could serve as a potential marker panel for the disease; however, much further investigation and validation of the results is needed

SELECTION OF CITATIONS
SEARCH DETAIL