Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Pain ; : 271-279, 2022.
Article in English | WPRIM | ID: wpr-939129

ABSTRACT

Background@#Inflammation is known to underlie the pathogenesis in neuropathic pain. This study investigated the anti-inflammatory and neuroprotective mechanisms involved in antinociceptive effects of co-administration of acetaminophen and L-carnosine in chronic constriction injury (CCI)-induced peripheral neuropathy in male Wistar rats. @*Methods@#Fifty-six male Wistar rats were randomly divided into seven experimental groups (n = 8) treated with normal saline/acetaminophen/acetaminophen + L-carnosine. CCI was used to induce neuropathic pain in rats. Hyperalgesia and allodynia were assessed using hotplate and von Frey tests, respectively. Investigation of spinal proinflammatory cytokines and antioxidant system were carried out after twenty-one days of treatment. @*Results@#The results showed that the co-administration of acetaminophen and Lcarnosine significantly (P < 0.001) increased the paw withdrawal threshold to thermal and mechanical stimuli in ligated rats compared to the ligated naïve group.There was a significant (P < 0.001) decrease in the levels of nuclear factor kappa light chain enhancer B cell inhibitor, calcium ion, interleukin-1-beta, and tumour necrotic factor-alpha in the spinal cord of the group coadministered with acetaminophen and L-carnosine compared to the ligated control group. Co-administration with acetaminophen and L-carnosine increased the antioxidant enzymatic activities and reduced the lipid peroxidation in the spinal cord. @*Conclusions@#Co-administration of acetaminophen and L-carnosine has anti-inflammatory effects as a mechanism that mediate its antinociceptive effects in CCIinduced peripheral neuropathy in Wistar rat.

2.
The Korean Journal of Pain ; : 13-22, 2020.
Article | WPRIM | ID: wpr-835219

ABSTRACT

Background@#The continuous search for a novel neuropathic pain drug with few or no side effects has been a main focus of researchers for decades. This study investigated the antinociceptive and neuroprotective effects of bromelain in sciatic nerve ligation-induced neuropathic pain in Wistar rats. @*Methods@#Forty-eight Wistar rats randomly divided into eight groups comprised of six animals each were used for this study. Peripheral neuropathy was induced via chronic constriction of the common sciatic nerve. Thermal hyperalgesic and mechanical allodynia were assessed using a hotplate and von Frey filaments, respectively. The functional recovery and structural architecture of the ligated sciatic nerve were evaluated using the sciatic functional index test and a histological examination of the transverse section of the sciatic nerve. The neuroprotective effects of bromelain were investigated in the proximal sciatic nerve tissue after 21 days of treatment. @*Results@#Bromelain significantly (P < 0.05) attenuated both the thermal hyperalgesia and mechanical allodynic indices of neuropathic pain. There were improvements in sciatic function and structural integrity in rats treated with bromelain. These rats showed significant (P < 0.05) increases in sciatic nerve nuclear transcription factors (nuclear factor erythroid-derived-2-related factors-1 [NrF-1] and NrF-2), antioxidant enzymes (superoxide dismutase and glutathione), and reduced membranelipid peroxidation compared with the ligated control group. @*Conclusions@#This study suggest that bromelain mitigated neuropathic pain by enhancing the activities of nuclear transcription factors (NrF-1 and NrF-2) which increases the antioxidant defense system that abolish neuronal stress and structural disorganization.

SELECTION OF CITATIONS
SEARCH DETAIL