Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
The Journal of Advanced Prosthodontics ; : 110-117, 2017.
Article in English | WPRIM | ID: wpr-179522

ABSTRACT

PURPOSE: This laboratory study assessed the effect of different dentin cleaning procedures on shear bond strength of resin cements for recementing prosthesis. MATERIALS AND METHODS: 4 × 4 flat surface was prepared on the labial surface of 52 maxillary central incisors. Metal frames (4 × 4 × 1.5 mm) were cast with nickel-chromium alloy. All specimens were randomly divided into 2 groups to be cemented with either Panavia F2.0 (P) or RelyX Ultimate (U) cement. The initial shear bond strength was recorded by Universal Testing Machine at a crosshead speed of 0.5 mm/min. Debonded specimens were randomly allocated into 2 subgroups (n = 13) according to the dentin cleaning procedures for recementation. The residual cement on bonded dentin surfaces was eliminated with either pumice slurry (p) or tungsten carbide bur (c). The restorations were rebonded with the same cement and were subjected to shear test. Data failed the normality test (P < .05), thus were analyzed with Mann Whitney U-test, Wilcoxon signed rank test, and two-way ANOVA after logarithmic transformation (α = .05). RESULTS: The initial shear bond strength of group P was significantly higher than group U (P = .001). Pc and Uc groups presented higher bond strength after recementation compared to the initial bond strength. However, it was significant only in Pc group (P = .034). CONCLUSION: The specimens recemented with Panavia F2.0 provided higher bond strength than RelyX Ultimate cement. Moreover, a tungsten carbide bur was a more efficient method in removing the residual resin cement and increased the bond strength of Panavia F2.0 cement after recementation.


Subject(s)
Alloys , Dentin , Incisor , Methods , Prostheses and Implants , Resin Cements , Tungsten
2.
The Journal of Advanced Prosthodontics ; : 504-510, 2016.
Article in English | WPRIM | ID: wpr-213523

ABSTRACT

PURPOSE: Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. MATERIALS AND METHODS: 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). RESULTS: The bond strength values of A and S were significantly higher than those of N (P<.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG (P<.001). CONCLUSION: The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.


Subject(s)
Acetic Acid , Denture Bases , Dentures , Methods , Nylons , Polymers , Tooth , Water
3.
The Journal of Advanced Prosthodontics ; : 224-228, 2016.
Article in English | WPRIM | ID: wpr-194489

ABSTRACT

PURPOSE: This study aimed to investigate whether dentin surface preparation with diamond rotary instruments of different grit sizes affects the shear bond strength of resin-bonded restorations. MATERIALS AND METHODS: The buccal enamel of 60 maxillary central incisors was removed with a low speed diamond saw and wet ground with silicon carbide papers. The polished surfaces of the teeth were prepared with four groups of rotary diamond burs with super-coarse (SC), coarse (C), medium (M), and fine (F) grit sizes. Following surface preparation, 60 restorations were casted with nickel-chromium alloy and bonded with Panavia cement. To assess the shear bond strength, the samples were mounted on a universal testing machine and an axial load was applied along the cement-restoration interface at the crosshead speed of 0.5 mm/min. The acquired data was analyzed with one way ANOVA and Tukey post hoc test (α=.05). RESULTS: The mean ± SD shear bond strengths (in MPa) of the study groups were 17.75 ± 1.41 for SC, 13.82 ± 1.13 for C, 10.40 ± 1.45 for M, and 7.13 ± 1.18 for F. Statistical analysis revealed the significant difference among the study groups such that the value for group SC was significantly higher than that for group F (P<.001). CONCLUSION: Dentin surface roughness created by diamond burs of different grit sizes considerably influences the shear bond strength of resin bonded restorations.


Subject(s)
Alloys , Dental Enamel , Dental Instruments , Dentin , Denture, Partial, Fixed, Resin-Bonded , Diamond , Incisor , Shear Strength , Silicon , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL