Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 44(9): 939-946, Sept. 2011.
Article in English | LILACS | ID: lil-599674

ABSTRACT

Heavy metals have been used in a wide variety of human activities that have significantly increased both professional and environmental exposure. Unfortunately, disasters have highlighted the toxic effects of metals on different organs and systems. Over the last 50 years, the adverse effects of chronic lead, mercury and gadolinium exposure have been underscored. Mercury and lead induce hypertension in humans and animals, affecting endothelial function in addition to their other effects. Increased cardiovascular risk after exposure to metals has been reported, but the underlying mechanisms, mainly for short periods of time and at low concentrations, have not been well explored. The presence of other metals such as gadolinium has raised concerns about contrast-induced nephropathy and, interestingly, despite this negative action, gadolinium has not been defined as a toxic agent. The main actions of these metals, demonstrated in animal and human studies, are an increase of free radical production and oxidative stress and stimulation of angiotensin I-converting enzyme activity, among others. Increased vascular reactivity, highlighted in the present review, resulting from these actions might be an important mechanism underlying increased cardiovascular risk. Finally, the results described in this review suggest that mercury, lead and gadolinium, even at low doses or concentrations, affect vascular reactivity. Acting via the endothelium, by continuous exposure followed by their absorption, they can increase the production of free radicals and of angiotensin II, representing a hazard for cardiovascular function. In addition, the actual reference values, considered to pose no risk, need to be reduced.


Subject(s)
Animals , Humans , Rats , Cardiovascular System/drug effects , Gadolinium/toxicity , Lead/toxicity , Mercury/toxicity , Adenosine Triphosphatases/chemistry , Cardiovascular Diseases/chemically induced , Endothelium, Vascular/drug effects , Free Radicals/chemistry , Free Radicals/metabolism , Metals, Heavy/poisoning , Poisoning , Risk Factors
2.
Braz. j. med. biol. res ; 44(5): 445-452, May 2011. ilus, tab
Article in English | LILACS | ID: lil-586508

ABSTRACT

Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4 percent) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8 percent) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1 percent). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1 percent). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19 percent AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.


Subject(s)
Animals , Female , Male , Rats , Aorta/drug effects , Gadolinium/pharmacology , Phenylephrine/pharmacology , Vasoconstriction/drug effects , Vasodilation/drug effects , Antihypertensive Agents/pharmacology , Aorta/physiology , Dose-Response Relationship, Drug , Enalaprilat/pharmacology , Endothelium, Vascular/drug effects , Losartan/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Rats, Wistar , Vasoconstriction/physiology , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL