Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Perinatol. reprod. hum ; 37(1): 31-38, ene.-mar. 2023. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1448784

ABSTRACT

Resumen El trabajo de parto es la transición de un estado de inactividad y relajación muscular a un estado de excitación, en el cual la capa muscular del útero (miometrio) realiza crecientes contracciones coordinadas para llevar a cabo la expulsión del feto y la placenta. Durante el inicio del trabajo de parto, el miometrio experimenta una serie de cambios fisiológicos, bioquímicos y moleculares, pasando de un estado de quiescencia a un fenotipo contráctil que inducirá el parto. En parte, esto es provocado por la acción de las hormonas progesterona, estradiol y oxitocina. En general, la progesterona mantiene la quiescencia del miometrio durante el embarazo al inhibir la expresión de moléculas proinflamatorias y proteínas asociadas a la contracción, mientras que al término del embarazo, el estradiol induce la expresión de dichas moléculas. Por su parte, la oxitocina induce un aumento en la concentración de calcio intracelular para llevar a cabo las contracciones de los miocitos uterinos. El objetivo del presente trabajo es presentar un resumen acerca de los mecanismos moleculares involucrados en la regulación de la actividad de las células miometriales por medio de las hormonas progesterona, estradiol y oxitocina, así como discutir las perspectivas de esta interesante área de investigación.


Abstract Labor is the transition from a state of inactivity and muscle relaxation to a state of muscle excitation, in which the muscular layer of the uterus (myometrium) performs increasingly coordinated contractions to deliver the fetus and expel the placenta. During the onset of labor, the myometrium undergoes a series of physiological, biochemical, and molecular changes, allowing the tissue to transition from a quiescent state to a contractile phenotype that will support labor. This is partly caused by the action of the hormones progesterone, estradiol, and oxytocin. In general, progesterone maintains the quiescence of the myometrium during pregnancy by decreasing the expression of proinflammatory molecules and contraction-associated proteins. In contrast, at the end of pregnancy, estradiol induces the expression of these molecules. For its part, oxytocin induces an increase in intracellular calcium concentration to carry out the contractions of uterine myocytes. The objective of this review is to present a summary of the molecular mechanisms involved in regulating myometrial cell activity through the hormones progesterone, estradiol and oxytocin, as well as to discuss the perspectives of this exciting area of research.

2.
Clinics in Shoulder and Elbow ; : 169-174, 2023.
Article in English | WPRIM | ID: wpr-1000197

ABSTRACT

Sleep quality, quantity, and efficiency have all been demonstrated to be adversely affected by rotator cuff pathology. Previous measures of assessing the impact of rotator cuff pathology on sleep have been largely subjective in nature. This study was undertaken to objectively analyze this relationship through the use of activity monitors. Methods: Patients with full-thickness rotator cuff tears at a single institution were prospectively enrolled between 2018 and 2020. Waistworn accelerometers were provided for the patients to use each night for 14 days. Sleep efficiency was calculated using the ratio of the time spent sleeping to the total amount of time that was spent in bed. Retraction of the rotator cuff tear was classified using the Patte staging system. Results: This study included 36 patients: 18 with Patte stage 1 disease, 14 with Patte stage 2 disease, and 4 patients with Patte stage 3 disease. During the study, 25 participants wore the monitor on multiple nights, and ultimately their data was used for the analysis. No difference in the median sleep efficiency was appreciated amongst these groups (P>0.1), with each cohort of patients demonstrating a generally high sleep efficiency. Conclusions: The severity of retraction of the rotator cuff tear did not appear to correlate with changes in sleep efficiency for patients (P>0.1). These findings can better inform providers on how to counsel their patients who present with complaints of poor sleep in the setting of full-thickness rotator cuff tears. Level of evidence: Level II.

3.
J Postgrad Med ; 2004 Jan-Mar; 50(1): 35-9
Article in English | IMSEAR | ID: sea-116078

ABSTRACT

In most countries where malaria is endemic, P. falciparum malaria is on the rise. This is primarily due to the spread of drug-resistant strains. Drug resistance is mediated by spontaneous changes in the parasite genome that allow resistant parasites to escape the action of the drugs. The spread of drug resistance increases the transmission of malaria parasites. The consequences for the populations at risk are profound both in terms of consequences for health and economy. In order to halt the progression of drug resistance, we need to change the way antimalarials are used. As in tuberculosis and HIV/AIDS, we must use a combination of drugs for the treatment of malaria. Taking into account the pharmacokinetic and pharmacodynamic properties of the various anti-malarial agents, artemisinin-based combination therapy (ACT) seems to be the best option. This strategy should be used in conjunction with early diagnosis and appropriate vector control measures to achieve reduction in the emergence and spread of drug resistance.


Subject(s)
Animals , Anti-Infective Agents/administration & dosage , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Drug Resistance, Microbial , Drug Therapy, Combination , Humans , Malaria, Falciparum/diagnosis , Plasmodium falciparum/genetics , Sesquiterpenes/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL