Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta sci., Biol. sci ; 43: e48257, 2021. graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1460968

ABSTRACT

Aspergillus niger KIJH was grown in solid and submerged fermentation using leaves and roots (with and without bark) of plants typically from Brazilian semiarid as substrate to produce a multienzymatic extract, which was characterised for its potential biotechnological applications. Solid-state fermentation (SSF) was applied to select the most promising plants biomass as induction substrates for the production of hydrolytic enzymes by fungus. The best biomasses were used as substrate in submerged fermentation (SmF) assays at two scales. Samples of up scale fermented culture were partially purified by ultrafiltration and activity and pH and temperature stability of CMCase and xylanase were evaluated. A. niger KIJH produced hydrolytic enzymes under SSF containing unconventional plants biomass from Brazilian semiarid. In SmF conditions, maximum CMCase (0.264 U mL-1) and xylanase (1.163 U mL-1) activities were induced by Jacaratia corumbensis. Scaling up the SmF to 500 mL of medium was able to maintain constant the production of CMCase (0.346 U mL-1) and xylanase (1.273 U mL-1) on the fermented culture. Ultrafiltered and concentrated extract presented CMCase activities practically constant in all temperature ranges (30-80°C) and pH (3.0-9.0), while xylanase optimum activity temperature was 50°C and pH in the range of 3.0 to 5.0. CMCase activity remained stable for 24 hours at 50°C


Subject(s)
Aspergillus niger/growth & development , Biomass , Fermentation , Substrates for Biological Treatment
2.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1461027

ABSTRACT

Aspergillus niger KIJH was grown in solid and submerged fermentation using leaves and roots (with and without bark) of plants typically from Brazilian semiarid as substrate to produce a multienzymatic extract, which was characterised for its potential biotechnological applications. Solid-state fermentation (SSF) was applied to select the most promising plants biomass as induction substrates for the production of hydrolytic enzymes by fungus. The best biomasses were used as substrate in submerged fermentation (SmF) assays at two scales. Samples of up scale fermented culture were partially purified by ultrafiltration and activity and pH and temperature stability of CMCase and xylanase were evaluated. A. niger KIJH produced hydrolytic enzymes under SSF containing unconventional plants biomass from Brazilian semiarid. In SmF conditions, maximum CMCase (0.264 U mL-1) and xylanase (1.163 U mL-1) activities were induced by Jacaratia corumbensis. Scaling up the SmF to 500 mL of medium was able to maintain constant the production of CMCase (0.346 U mL-1) and xylanase (1.273 U mL-1) on the fermented culture. Ultrafiltered and concentrated extract presented CMCase activities practically constant in all temperature ranges (30-80°C) and pH (3.0-9.0), while xylanase optimum activity temperature was 50°C and pH in the range of 3.0 to 5.0. CMCase activity remained stable for 24 hours at 50°C a

3.
Acta sci., Biol. sci ; 40: 41512-41512, 20180000. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460803

ABSTRACT

The conversion of agroindustrial residues by microorganisms has been explored from fermentative processes to obtain several bioactive molecules. The objective of this work was to isolate and select filamentous fungi present in cassava liquid waste for the production of amylase, carboxymethylcellulose (CMCase), pectinase and xylanase using the same residue as induction substrate in fermentative processes. A total of 65 filamentous fungi were isolated and qualitative tests indicated that approximately 86% of these strains were able to produce at least one of the enzymes and 32% capable of producing the four enzymes. Fermentation assays in cassava liquid residue-containing medium showed 6 fungal lines as potential enzyme producers. The maximum activities of pectinase, xylanase, amylase and CMCase were respectively observed at 96 hours of fermentation by the strain by the strain Aspergillus sp. B5C; at 120 hours (163.6 ± 0.13 nKat mL-1), by Aspergillus sp. B4I; at 144 hours (99.8 ± 0.24 nKat mL-1), by Penicillium sp. B3A; and at 48 hours (55.5 ± 0.21 nKat mL-1), by Aspergillus sp. B4O. These results suggest that cassava liquid waste was source of filamentous fungi producing amylase, CMCase, pectinase and xylanase, as well as a promising alternative substrate for bioprocesses aiming the production of enzymes.


A conversão de resíduos agroindustriais por micro-organismos tem sido explorada a partir de processos fermentativos para obtenção de diversas moléculas bioativas. O objetivo deste trabalho foi isolar e selecionar fungos filamentosos presentes em manipueira para produção de amilase, carboximetilcelulase (CMCase), pectinase e xilanase utilizando o próprio resíduo como substrato indutor. Um total de 65 fungos filamentosos foi isolado e testes qualitativos indicaram que, aproximadamente, 86% dessas linhagens foram hábeis em produzir pelo menos uma das enzimas e 32% capazes de produzir as quatro enzimas. Ensaios fermentativos em meio contendo manipueira apontaram 6 linhagens fúngicas como potenciais produtoras de enzimas. As atividades máximas de pectinase, xilanase, amilase e CMCase foram observadas, respectivamente, às 96 horas de fermentação (67.4 ± 0,6 nKat mL-1), pela linhagem Aspergillus sp. B5C; às 120 horas (163.6 ± 0,13 nKat mL-1), por Aspergillus sp. B4I; às 144 horas (99.8 ± 0,24 nKat mL-1), por Penicillium sp. B3A; e às 48 horas (55.5 ± 0,21 nKat mL-1), por Aspergillus sp. B4O. Estes resultados sugerem a manipueira como fonte de fungos filamentosos produtores de amilase, CMCase, pectinase e xilanase, além de um promissor substrato alternativo para bioprocessos visando a produção dessas enzimas.


Subject(s)
Amylases , Fermentation , Fungi/enzymology , Polygalacturonase
SELECTION OF CITATIONS
SEARCH DETAIL