Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 31: 61-66, Jan. 2018. graf, ilus, tab
Article in English | LILACS | ID: biblio-1022044

ABSTRACT

Background: Study of correlation between pretreatment of yeast with ultraviolet radiation and efficiency of further fermentation of wort made of ultrafine grain particles to ethanol. Results: We investigated three races of industrial yeast Saccharomyces cerevisiae (native and irradiated by ultraviolet). Physiological properties during fermentation of starchy wort were tested in all variants. It was shown that activation of the yeast by ultraviolet radiation allows to further increase the ethanol yield by 25% on average compared with the native yeast races when using thin (up to micro- and nano-sized particles) or standard grain grinding. Conclusions: Using mechanical two-stage grinding of starchy raw materials and ultraviolet pretreatment of yeast, the efficiency of saccharification of starch and fermentation of wort to ethanol was increased.


Subject(s)
Saccharomyces cerevisiae/radiation effects , Ultraviolet Rays , Yeasts/radiation effects , Ethanol/radiation effects , Saccharomyces/metabolism , Starch , Temperature , Yeasts/metabolism , Enzyme Stability , Ethanol/metabolism , Fermentation , Glucose , Amylases
2.
Electron. j. biotechnol ; 19(2): 14-19, Mar. 2016. ilus
Article in English | LILACS | ID: lil-782611

ABSTRACT

Background: A study of the correlation between the particle size of lignocellulosic substrates and ultrasound pretreatment on the efficiency of further enzymatic hydrolysis and fermentation to ethanol. Results: The maximum concentrations of glucose and, to a lesser extent, di- and trisaccharides were obtained in a series of experiments with 48-h enzymatic hydrolysis of pine raw materials ground at 380-100 rpm for 30 min. The highest glucose yield was observed at the end of the hydrolysis with a cellulase dosage of 10 mg of protein (204 ±21 units CMCase per g of sawdust). The greatest enzymatic hydrolysis efficiency was observed in a sample that combined two-stage grinding at 400 rpm with ultrasonic treatment for 5-10 min at a power of 10 W per kg of sawdust. The glucose yield in this case (35.5 g glucose l-1) increased twofold compared to ground substrate without further preparation. Conclusions: Using a mechanical two-stage grinding of lignocellulosic raw materials with ultrasonication increases the efficiency of subsequent enzymatic hydrolysis and fermentation.


Subject(s)
Saccharomyces cerevisiae , Cellulase , Biofuels , Hydrolysis , Lignin , Wood , Yeasts , Ethanol , Fermentation , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL