Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 394-404, 2021.
Article in Chinese | WPRIM | ID: wpr-950229

ABSTRACT

Objective: To evaluate the antidiabetic potential of leaf extracts of Tylophora hirsuta (T. hirsuta). Methods: The methanolic and ethyl acetate extracts of T. hirsuta leaves were analyzed by high pressure liquid chromatography. In vitro antioxidant activity was determined by ferric ion reduction, 1, 1-diphenyl-2-picrylhydrazyl, and hydrogen peroxide scavenging methods. In vitro alpha amylase (α-Amylase) inhibitory activity of the plant extracts was assessed. In vivo antidiabetic potential was determined in alloxan-induced diabetic mice to assess glycated hemoglobin (HbA1c), oral glucose tolerance, serum amylase, lipid profile, fasting blood glucose, and body weight. Histopathological lesions of the pancreas, liver and kidney were observed. Oxidative stress biomarkers such as superoxide dismutase, catalase and peroxidase were also determined. Results: Quercetin, chlorogenic acid, p-coumaric acid, and m-coumaric acid were found in the plant extracts. The methanolic plant extract exhibited higher in vitro antioxidant activities than the ethyl acetate extract. Moreover, methanolic plant extract exhibited (83.90±1.56)% α-Amylase inhibitory activity at 3.2 mg/ mL concentration. Animal study showed that the methanolic extract of T. hirsuta improved the levels of fasting blood glucose, HbA1c, serum α-Amylase, lipid profile, liver function biomarkers, and kidney functions of diabetic mice. Moreover, the methanolic extract ameliorated diabetes-related oxidative stress by increasing superoxide dismutase and catalase activities and decreasing peroxidase and malondialdehyde levels. Histopathological examination showed that the plant extract had improved the integrity of pancreatic islets of Langerhans and reduced the pathological lesions in the liver and kidney of diabetic mice. Conclusions: The methanolic extract of T. hirsuta exhibits pronounced antidiabetic activity in mice through reduction of oxidative stress. The plant extract has several natural antioxidants such as phenolic acids. T. hirsuta extract could serve as a nutraceutical for managing diabetes mellitus.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 394-404, 2021.
Article in Chinese | WPRIM | ID: wpr-942793

ABSTRACT

Objective: To evaluate the antidiabetic potential of leaf extracts of Tylophora hirsuta (T. hirsuta). Methods: The methanolic and ethyl acetate extracts of T. hirsuta leaves were analyzed by high pressure liquid chromatography. In vitro antioxidant activity was determined by ferric ion reduction, 1, 1-diphenyl-2-picrylhydrazyl, and hydrogen peroxide scavenging methods. In vitro alpha amylase (α-Amylase) inhibitory activity of the plant extracts was assessed. In vivo antidiabetic potential was determined in alloxan-induced diabetic mice to assess glycated hemoglobin (HbA1c), oral glucose tolerance, serum amylase, lipid profile, fasting blood glucose, and body weight. Histopathological lesions of the pancreas, liver and kidney were observed. Oxidative stress biomarkers such as superoxide dismutase, catalase and peroxidase were also determined. Results: Quercetin, chlorogenic acid, p-coumaric acid, and m-coumaric acid were found in the plant extracts. The methanolic plant extract exhibited higher in vitro antioxidant activities than the ethyl acetate extract. Moreover, methanolic plant extract exhibited (83.90±1.56)% α-Amylase inhibitory activity at 3.2 mg/ mL concentration. Animal study showed that the methanolic extract of T. hirsuta improved the levels of fasting blood glucose, HbA1c, serum α-Amylase, lipid profile, liver function biomarkers, and kidney functions of diabetic mice. Moreover, the methanolic extract ameliorated diabetes-related oxidative stress by increasing superoxide dismutase and catalase activities and decreasing peroxidase and malondialdehyde levels. Histopathological examination showed that the plant extract had improved the integrity of pancreatic islets of Langerhans and reduced the pathological lesions in the liver and kidney of diabetic mice. Conclusions: The methanolic extract of T. hirsuta exhibits pronounced antidiabetic activity in mice through reduction of oxidative stress. The plant extract has several natural antioxidants such as phenolic acids. T. hirsuta extract could serve as a nutraceutical for managing diabetes mellitus.

3.
Asian Pacific Journal of Tropical Medicine ; (12): 350-357, 2020.
Article in Chinese | WPRIM | ID: wpr-951147

ABSTRACT

Malaria is one of the most devastating infectious diseases that caused millions of clinical cases annually despite decades of prevention efforts. Recent cases of Plasmodium falciparum resistance against the only remaining class of effective antimalarial (artemisinin) in South East Asia may soon pose a significant threat. Hence, the identification of new antimalarial compounds with a novel mode of action is necessary to curb this problem. Protein kinase has been implicated as a valid target for drug development in diseases such as cancer and diabetes in humans. A similar approach is now recognized for the treatment of protozoan-related disease including malaria. Few Plasmodium protein kinases that are not only crucial for their survival but also have unique structural features have been identified as a potential target for drug development. In this review, studies on antimalarial drug development exploiting the size of Plasmodium protein kinase ATP gatekeeper over the past 15 years are mainly discussed. The ATP-binding site of Plasmodium protein kinases such as Pf CDPK1, Pf CDPK4, Pf PKG, Pf PK7, and Pf PI4K showed great potential for selective and multi-target inhibitions owing to their smaller or unique ATP-gatekeeper amino acid subunits compared to that of human protein kinase. Hence it is a feasible solution to identify a new class of active antimalarial agents with a novel mode of action and longer clinical life-span.

4.
Pakistan Journal of Pharmaceutical Sciences. 2018; 31 (4 [Supp.]): 1475-1484
in English | IMEMR | ID: emr-199538

ABSTRACT

Roots, bark, stem/twigs, and leaves of Fraxinus xanthoxyloides are being used regionally for the cure of malaria, jaundice, internal injuries, pneumonia, pain, rheumatism and also in fracture of bones. Our objective was to assess the methanolic leaves extract of F. xanthoxyloides for its antioxidant capability against oxidative stress induced by carbon tetrachloride [CCl[4]] in the kidney of Sprague-Dawley rats. Duration of this experiment was 30 days and doses were given on alternative days. Urine of rats was assessed for kidney function and renal tissues for antioxidant enzymes activity, biochemical markers, comet assay and histopathology. Enhanced urinary creatinine, urobilinogen levels and decreased creatinine clearance, protein contents, and albumin levels were observed by CCl[4] administration when matched to controls. CCl[4] injection also decreased the level of reduced glutathione, catalase, super oxide dismutase, peroxidase, glutathione s-transferase, glutathione reductase, and tissue protein while elevated the levels of thiobarbituric acid reactive substances, DNA damages and H[2]O[2] in renal tissues of experimental animals. Co-treatment of FXM and silymarin, lead to the restoration of all the above tested parameters of kidney. Through this study we affirmed the ameliorating role of F. xanthoxyloides in oxidative stress affiliated disorders of kidney

5.
Pakistan Journal of Pharmaceutical Sciences. 2018; 31 (5 [Supp.]): 2163-2168
in English | IMEMR | ID: emr-199610

ABSTRACT

Mushrooms, a treasure of diverse bioactive scaffolds, have been widely admired due to their nutritional and medicinal significance all over the world. The current study intended to evaluate the therapeutic potentiality of an edible mushroom, Leucoagaricus leucothites [Vittad.] Wasser. Thus, anti-oxidant potential of L. leucothites was determined using DPPH assay and for the determination of anti-microbial potential agar dilution procedure was followed. TOS [total oxidant status], TAS [total anti-oxidant status], and OSI [oxidative stress index] values were evaluated utilizing Rel Assay Kits. For the assessment of heavy metal contents, wet decomposition approach with atomic absorption spectrophotometry was adopted. Screening of phytochemicals present in ethanolic extract of L. leucothites were determined by HPLC. TAS, TOS and OSI values were found to be 8.291mmol/L, 10.797ìmol/L and 0.130 respectively. Our results declared that heavy metal contents are generally in the safe range. Phytochemical analysis of L. leucothites has affirmed the presence of important phenolics such as gallic acid, catechin, and hesperidin. Investigations on antioxidant and anti-microbial potential of L. leucothites has uncovered the fact that this naturally occurring, biologically active, and therapeutically effective mushroom specie has natural borne anti-oxidant and anti-microbial potential and it would be worthwhile to use it for nutritional as well as medicinal purpose

SELECTION OF CITATIONS
SEARCH DETAIL