Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 25(1): 10-19, Jan.-Feb. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-841166

ABSTRACT

Abstract Objectives This study aimed to evaluate the potential of adipose-derived stem cells (ASCs) combined with a modified α-tricalcium phosphate (α-TCP) or gelatin sponge (GS) scaffolds for bone healing in a rat model. Material and Methods Bone defects were surgically created in the femur of adult SHR rats and filled with the scaffolds, empty or combined with ASCs. The results were analyzed by histology and histomorphometry on days seven, 14, 30, and 60. Results Significantly increased bone repair was observed on days seven and 60 in animals treated with α-TCP/ASCs, and on day 14 in the group treated with GS/ASCs, when compared with the groups treated with the biomaterials alone. Intense fibroplasia was observed in the group treated with GS alone, on days 14 and 30. Conclusions Our results showed that the use of ASCs combined with α-TCP or GS scaffolds resulted in increased bone repair. The higher efficacy of the α-TCP scaffold suggests osteoconductive property that results in a biological support to the cells, whereas the GS scaffold functions just as a carrier. These results confirm the potential of ASCs in accelerating bone repair in in vivo experimental rat models. These results suggest a new alternative for treating bone defects.


Subject(s)
Animals , Male , Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Calcium Phosphates/pharmacology , Adipose Tissue/cytology , Stem Cell Transplantation/methods , Tissue Scaffolds , Gelatin Sponge, Absorbable/pharmacology , Osteogenesis/drug effects , Rats, Inbred SHR , Tetrazolium Salts , Time Factors , Wound Healing/drug effects , Biocompatible Materials/therapeutic use , Calcium Phosphates/therapeutic use , Cell Adhesion/drug effects , Cells, Cultured , Reproducibility of Results , Treatment Outcome , Models, Animal , Cell Proliferation/drug effects , Femur/surgery , Femur/pathology , Fibroblasts/drug effects , Formazans , Gelatin Sponge, Absorbable/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL