Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1573-1580, 2013.
Article in Chinese | WPRIM | ID: wpr-242436

ABSTRACT

Gene knockout by ZFNs (zinc-finger nucleases) is efficient and specific, and successfully applied in more than 10 organisms. Currently, it is unclear whether this technology can be used for knocking-out enhanced green fluorescent protein (EGFP) gene in transgenic goats. Here we constructed and used ZFN-coding plasmids to produce genetic knockouts in the cells of cloned fetus produced from donor cells by microinjection of EGFP gene. Following introduced plasmids into caprine primary cultured fetus fibroblasts by electroporation, targeting of a transgene resulted in sequence mutation. Using the flow cytometric analysis, we confirmed the disappearance of EGFP expression in treated cells. Sequence from PCR products corresponding to targeted site showed that insertion of a G into the exon of EGFP resulted in frame shift mutation. These results suggest that ZFN-mediated gene targeting can apply to caprine fetus fibroblasts, which may open a unique avenue toward the creation of gene knockout goats combining with somatic cell nuclear transfer.


Subject(s)
Animals , Base Sequence , Cloning, Organism , Electrophoresis , Endonucleases , Genetics , Metabolism , Fetus , Fibroblasts , Metabolism , Gene Knockout Techniques , Gene Targeting , Methods , Goats , Green Fluorescent Proteins , Genetics , Molecular Sequence Data , Mutation , Zinc Fingers
2.
Chinese Journal of Biotechnology ; (12): 1482-1491, 2012.
Article in Chinese | WPRIM | ID: wpr-233278

ABSTRACT

We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.


Subject(s)
Animals , Humans , Animals, Genetically Modified , Genetics , Cloning, Molecular , Cloning, Organism , Methods , Fetus , Fibroblasts , Cell Biology , Genetic Markers , Goats , Embryology , Genetics , Green Fluorescent Proteins , Genetics , Lactoferrin , Genetics , Neomycin , Nuclear Transfer Techniques , Recombinant Proteins , Genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL