Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Neotrop. entomol ; 39(1): 35-45, Jan.-Feb. 2010. ilus
Article in English | LILACS | ID: lil-540932

ABSTRACT

Ultrastructural analysis of the ventral region of the head - rostrum, buccula and stridulatorium sulcus - of 1st, 3rd and 5th instars of Triatoma klugi Carcavallo et al, Triatoma vandae Carcavallo et al, and Triatoma williami Galvão et al, are described in here. Morphological differences in the analyzed structures for all three Triatoma species studied were detected under scanning electron microscopy, allowing their grouping by their morphological similarities. Species-specific differences at each nymphal development stage were analyzed as well.


Subject(s)
Animals , Reduviidae/anatomy & histology , Microscopy, Electron, Scanning , Nymph
2.
Mem. Inst. Oswaldo Cruz ; 94(suppl.1): 149-52, Sept. 1999.
Article in English | LILACS | ID: lil-245607

ABSTRACT

The present paper summarizes new approaches regarding the progress done to the understanding of the interaction of Trypanosoma cruzi-cardiomyocytes. Mannose receptors localized at the surface of heart muscle cell are involved in binding and uptake of the parasite. One of the most striking events in the parasite-heart muscle cells interaction is the disruption of the actin cytoskeleton. We have investigated the regulation of the actin mRNA during the cytopathology induced in myocardial cells by the parasite. T. cruzi invasion increases calcium resting levels in cardiomyocytes. We have previously shown that Ca2+ ATPase of the sarcoplasmic reticulum (SERCA) is involved in the invasion of T. cruzi in cardiomyocytes. Treating the cells with thapsigargin, a drug that binds to all SERCA ATPases and causes depletion of intracellular calcium stores, we found a 75 per cent inhibition in the T. cruzi-cardiomyocytes invasion.


Subject(s)
Animals , Cell Communication , Myocardium/cytology , Trypanosoma cruzi/cytology , Calcium , Ions , Mannose , RNA, Messenger
4.
Mem. Inst. Oswaldo Cruz ; 87(supl.5): 43-56, 1992.
Article in English | LILACS | ID: lil-128419

ABSTRACT

Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction


Subject(s)
alpha-Macroglobulins , Endocytosis , Endopeptidases , Lectins , Ligands , Macrophages/ultrastructure , Myocardium/ultrastructure , Receptors, Cell Surface , Trypanosoma cruzi/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL