Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. odontol. UNESP (Online) ; 52: e20230028, 2023. tab
Article in English | LILACS, BBO | ID: biblio-1530302

ABSTRACT

Introduction: the use of light emitting diodes (LED) in domestic and public vias have increased in the last 20 years. In addition, the LED light has been used as a light source for medical applications. Objective: since humans are increasingly exposed to LEDs, there is an urgency to investigate the possible biological effects on tissues caused by this exposure. So, researchers have been focused their investigations in the application of this light in the health field. Material and method: in this review, a search in important databases was performed on the biological effects caused after application of different LED light protocols in in vitro and in vivo studies. Result: although most published papers have shown positive results, some of them reported negative biological effects of light LEDs technology on humans' cells/tissues. Conclusion: therefore, the comprehension of the biological effects caused by light LEDs will provide a better assessment of the risks involved using this technology.


Introdução: o uso de diodos emissores de luz ("LED") em vias domésticas e públicas tem aumentado nos últimos 20 anos. Além disso, a luz LED tem sido usada para aplicações médicas. Objetivo: pelo fato de seres humanos estarem cada vez mais expostos aos LEDs, há urgência em investigar os possíveis efeitos biológicos nos tecidos causados por esta exposição. Assim, pesquisadores têm focado suas investigações no uso desta luz na área da saúde. Material e método: nesta revisão foi realizada uma pesquisa em bancos de dados conceituados sobre os efeitos biológicos causados após aplicação de diferentes protocolos de luz LED em estudos in vitro e in vivo. Resultado: embora a maioria dos artigos publicados tenham mostrado resultados positivos, alguns deles relataram efeitos biológicos negativos da tecnologia de LEDs nas células/tecidos humanos. Conclusão: portanto, a compreensão dos efeitos biológicos causados pela luz LED proporcionará uma melhor avaliação dos riscos envolvidos no uso desta tecnologia.


Subject(s)
Phototherapy , Tissues , In Vitro Techniques , Catchment Area, Health , Cells , Lasers, Semiconductor , Curing Lights, Dental
2.
J. appl. oral sci ; 30: e20220319, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1421889

ABSTRACT

Abstract Objective Some microorganisms, i.e., Candida albicans, have been associated with cancer onset and development, although whether the fungus promotes cancer or whether cancer facilitates the growth of C. albicans is unclear. In this context, microbial-derived molecules can modulate the growth and resistance of cancer cells. This study isolated extracellular lipids (ECL) from a 36-h Candida albicans biofilm incubated with oral dysplastic (DOK) and neoplastic (SCC 25) cells, which were further challenged with the topoisomerase I inhibitor camptothecin (CPT), a lipophilic anti-tumoral molecule. Methodology ECL were extracted from a 36-h Candida albicans biofilm with the methanol/chloroform precipitation method and identified with Nuclear Magnetic Resonance (1H-NMR). The MTT tetrazolium assay measured ECL cytotoxicity in DOK and SCC 25 cells, alamarBlue™ assessed cell metabolism, flow cytometry measured cell cycle, and confocal microscopy determined intracellular features. Results Three major classes of ECL of C. albicans biofilm were found: phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylglycerol (PG). The ECL of C. albicans biofilm had no cytotoxic effect on neither cell after 24 hours, with a tendency to disturb the SCC 25 cell cycle profile (without statistical significance). The ECL-induced intracellular lipid droplet (LD) formation on both cell lines after 72 hours. In this context, ECL enhanced cell metabolism, decreased the response to CPT, and modified intracellular drug distribution. Conclusion The ECL (PI, PC, and PG) of 36-h Candida albicans biofilm directly interacts with dysplastic and neoplastic oral cells, highlighting the relevance of better understanding C. albicans biofilm signaling in the microenvironment of tumor cells.

SELECTION OF CITATIONS
SEARCH DETAIL