Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Indian J Ophthalmol ; 2019 Sep; 67(9): 1476
Article | IMSEAR | ID: sea-197482
2.
Indian J Ophthalmol ; 2019 Sep; 67(9): 1448-1454
Article | IMSEAR | ID: sea-197469

ABSTRACT

Purpose: To compare the anatomic success of pars plana vitrectomy (PPV) after internal limiting membrane (ILM) peeling at macular area and macular plus peripapillary area versus no peeling in rhegmatogenous retinal detachments (RRD). Methods: A prospective observational study between July 2014 and March 2017 conducted on 289 eyes of 287 patients with RRD were randomly assigned to three treatment procedures, viz., PPV with no ILM peeling, PPV with macular peeling, and PPV with macular plus peripapillary peeling. Recurrent RD (ReRD) was treated as an event and accordingly the overall primary (PS) and final success (FS) rates were obtained. The risk of ReRD associated with peeling procedures after adjusting for risk factors were obtained using Cox-proportional hazard analysis. Results: The PS percentage for no peel, macular, and macular plus peripapillary procedures were 77.78% (70/90), 82.18% (83/101), and 94.89% (93/98; maximum), respectively, which was statistically significant with a P value of 0.003. The FS percentage for no peel, macular, and macular plus peripapillary were 93.33%, 95.04%, and 100%, respectively, which was significantly different with a P value of 0.048. With reference to no peeling, the adjusted hazard ratio for macular peeling was 0.841 [95% CI: 0.44–1.60] while 0.235 [95% CI: 0.088–0.626] for macular plus peripapillary peeling. Conclusion: The anatomic success rate of PPV with macular plus peripapillary ILM peeling was significantly higher as compared to no peel category. The hazard of ReRD in patients undergoing macular plus peripapillary peel was significantly reduced as compared to no peel procedure.

3.
Indian J Ophthalmol ; 2019 Jan; 67(1): 75-81
Article | IMSEAR | ID: sea-197055

ABSTRACT

Purpose: To determine the diagnostic accuracy of a linear discriminant function (LDF) based on macular ganglion cell complex (GCC), optic nerve head (ONH) and retinal nerve fibre layer (RNFL) for differentiating early primary open-angle glaucoma (POAG) from glaucoma suspects. Methods: In this cross-sectional study, data from consecutive 127 glaucoma suspects and 74 early POAG eyes were analysed. Each patient underwent detailed ocular examination, standard automated perimetry, GCC and ONH and RNFL analysis. After adjusting for age, gender and signal strength using the analysis of covariance; Benjamin–Hochberg multiple testing correction was performed to detect truly significant parameters to calculate the LDF. Subsequently, diagnostic accuracy of GCC and ONH and RNFL were determined. The obtained LDF score was evaluated for diagnostic accuracy in another test set of 32 suspect and 19 glaucomatous eyes. Data were analysed with the R-3.2.1 (R Core Team 2015), analysis of variance, t-test, Chi-square test and receiver operating curve. Results: Among all GCC parameters, infero temporal had the best discriminating power and average RNFL thickness and vertical CDR among ONH and RNFL parameters. LDF scores for GCC had AUROC of 0.809 for a cut-off value 0.07, while scores for ONH and RNFL had AUROC of 0.903 for a cut-off value ? 0.24. Analysis on combined parametric space resulted in avg RNFL thickness, vertical CDR, min GCC + IPL and superior GCC + IPL as key parameters. LDF scores obtained had AUROC of 0.924 for a cut-off value 0.1. The LDF was applied to a test set with an accuracy of 84.31%. Conclusion: The LDF had a better accuracy than individual GCC and ONH and RNFL parameters and can be used for diagnosis of glaucoma.

SELECTION OF CITATIONS
SEARCH DETAIL