Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1314-1318, 2023.
Article in Chinese | WPRIM | ID: wpr-1009061

ABSTRACT

OBJECTIVE@#To summarize the influence of microstructure on performance of triply-periodic minimal surface (TPMS) bone scaffolds.@*METHODS@#The relevant literature on the microstructure of TPMS bone scaffolds both domestically and internationally in recent years was widely reviewed, and the research progress in the imfluence of microstructure on the performance of bone scaffolds was summarized.@*RESULTS@#The microstructure characteristics of TPMS bone scaffolds, such as pore shape, porosity, pore size, curvature, specific surface area, and tortuosity, exert a profound influence on bone scaffold performance. By finely adjusting the above parameters, it becomes feasible to substantially optimize the structural mechanical characteristics of the scaffold, thereby effectively preempting the occurrence of stress shielding phenomena. Concurrently, the manipulation of these parameters can also optimize the scaffold's biological performance, facilitating cell adhesion, proliferation, and growth, while facilitating the ingrowth and permeation of bone tissue. Ultimately, the ideal bone fusion results will obtain.@*CONCLUSION@#The microstructure significantly and substantially influences the performance of TPMS bone scaffolds. By deeply exploring the characteristics of these microstructure effects on the performance of bone scaffolds, the design of bone scaffolds can be further optimized to better match specific implantation regions.


Subject(s)
Tissue Scaffolds/chemistry , Tissue Engineering/methods , Bone and Bones , Porosity
2.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1037-1041, 2023.
Article in Chinese | WPRIM | ID: wpr-1009020

ABSTRACT

OBJECTIVE@#To review the research progress of design of bone scaffolds with different single cell structures.@*METHODS@#The related literature on the study of bone scaffolds with different single cell structures at home and abroad in recent years was extensively reviewed, and the research progress was summarized.@*RESULTS@#The single cell structure of bone scaffold can be divided into regular cell structure, irregular cell structure, cell structure designed based on topology optimization theory, and cell structure designed based on triply periodic minimal surface. Different single cell structures have different structural morphology and geometric characteristics, and the selection of single cell structure directly determines the mechanical properties and biological properties of bone scaffold. It is very important to choose a reasonable cell structure for bone scaffold to replace the original bone tissue.@*CONCLUSION@#Bone scaffolds have been widely studied, but there are many kinds of bone scaffolds at present, and the optimization of single cell structure should be considered comprehensively, which is helpful to develop bone scaffolds with excellent performance and provide effective support for bone tissue.


Subject(s)
Bone and Bones , Tissue Scaffolds
3.
Chinese Journal of Geriatrics ; (12): 962-966, 2021.
Article in Chinese | WPRIM | ID: wpr-910948

ABSTRACT

Sarcopenia, referred to as myopenia, is a systemic syndrome characterized by decreased muscle mass and muscle strength, and decline of motor function.The elderly are a high incidence group of myopenia.With the aging of the world's population becoming increasingly severe, the incidence rate of sarcopenia has also increased, which has brought a heavy burden to the elderly family and society, and has become an important social health problem for the elderly.At present, there are more and more researches on sarcopenia, but the pathogenic factors of sarcopenia are complex and diverse.The prevention and treatment of sarcopenia still need to be further explored and studied.The establishment of an ideal animal model is the key premise and basis for the related research of sarcopenia.In this paper, the different modeling methods, advantages and disadvantages as well as the scope of application of sarcopenia animal models are described, which can provide reference and help for the subsequent animal experimental research of sarcopenia.

4.
Journal of Medical Biomechanics ; (6): E284-E289, 2021.
Article in Chinese | WPRIM | ID: wpr-904399

ABSTRACT

Objective To investigate biomechanical characteristics of femoral neck fracture with different reduction qualities. Methods Three cases of Sawbones artificial femoral models were selected, and two cases of Pauwel III femoral neck fracture were modeled. Three cannulated screws were inserted into the models in the form of inverted triangle to fix the fracture. Two cases maintained different reduction qualities (defined as Model 1 and Model 2). In the 3 third case, no modeling operation was performed (defined as intact model). Then the strain gauges were respectively pasted on regions of interest of the 3 femoral models. Finally, the femur model was applied with the vertical load on mechanical testing machine. Results When the displacement of femoral head reached 4 mm, the average load of intact model, Model 1 and Model 2 was (236.30±5.35), (196.57±3.56), (69.50±2.95) N, showing significant differences. When the displacement of femoral head reached 5 mm, the average load of intact model, Model 1 and Model 2 was (276.7±3.40),(232.93±2.64),(80.83±4.54) N, showing significant differences. Conclusions The lower the reduction quality of the femoral neck fracture, the weaker the ability of the femur to bear stress, the higher the probability of nonunion, re-fracture and femoral head necrosis in the process of postoperative rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL