Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 16(1): 76-86, 2010. ilus
Article in English | LILACS, VETINDEX | ID: lil-542430

ABSTRACT

In this study, the morphology, histology and fine structure of the stinger, a part of the venom apparatus of Euscorpius mingrelicus (Kessler, 1874) (Scorpiones: Euscorpiidae) were studied by light microscopy and transmission electron microscopy (TEM). The stinger, located at the end section of the telson, is sickle-shaped. The venom is ejected through a pair of venom pores on its subterminal portion. Both venom ducts extend along the stinger without contact with each other since they are separated by connective tissue cells. The stinger cuticle is composed of two layers. Additionally, there are many pore canals and some hemolymph vessels in the cuticle. This work constitutes the first histological and fine structure study on Euscorpius mingrelicus stinger.(AU)


Subject(s)
Animals , Scorpion Venoms , Scorpions , Microscopy, Electron, Transmission , Histology
2.
J. venom. anim. toxins incl. trop. dis ; 14(4): 641-650, 2008. ilus, tab
Article in English | LILACS, VETINDEX | ID: lil-500134

ABSTRACT

Since the number of microorganisms that are resistant to antibiotics has been increasing steadily, the need for combating these pathogens requires new pharmaceutical agents. To produce these substances, new models have been developed in recent decades. In our study, the venom of Agelena labyrinthica (Clerck, 1757) (Araneae: Agelenidae) was tested against ten bacterial strains, specifically, testing 1/100, 1/10 and 1/1 fractions of diluted venom against these bacteria. While the 1/100 dilution was successful in only one of ten bacterial strains, the 1/10 and the 1/1 were effective on six of ten bacterial strains. The most effective results, among these three different concentrations, were observed on Bacillus subtilis. The other five strains that were also sensitive to the dilutions showed similar inhibition zones. Morphological alterations on bacterial cells and comparison with normal cells were accomplished by scanning electron microscopy (SEM). The venom-treated cells, due to their loss of cytoplasm, shrank and presented cell wall depression.(AU)


Subject(s)
Animals , Spiders , Bacillus subtilis , Cytoplasm , Anti-Bacterial Agents , Microscopy, Electron, Scanning
3.
J. venom. anim. toxins incl. trop. dis ; 14(3): 466-480, 2008. ilus
Article in English | LILACS, VETINDEX | ID: lil-492210

ABSTRACT

The histology and ultrastructure of venom glands in the scorpion Euscorpius mingrelicus (Kessler, 1874) are described and illustrated in the current study for the first time by employing light microscopy and transmission electron microscopy (TEM). The venom apparatus is composed of a pair of venom glands and a stinger, both situated in the last segment of the metasoma. The venom glands are completely separate but similar. The two glands are segregated within the telson by striated muscle bundles, and their outer surfaces are surrounded by a cuticle. An internal layer constitutes the secretory epithelium. This epithelium is made up of simple columnar cells. The nucleus and organelles involved in cellular synthetic activity are situated basally. In the apical portion, near the gland lumen, there are many secretory granules of different sizes, shapes and electron densities.(AU)


Subject(s)
Animals , Scorpion Venoms/enzymology , Scorpions , Histology
SELECTION OF CITATIONS
SEARCH DETAIL