Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Environ Biol ; 2009 May; 30(3): 327-332
Article in English | IMSEAR | ID: sea-146194

ABSTRACT

Clean drinking water is one of the implicit requisites for a healthy human population. However, the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using ‘adsorbents’. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening / pretreatment / activation / impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal.

2.
J Environ Biol ; 2004 Oct; 25(4): 469-75
Article in English | IMSEAR | ID: sea-113590

ABSTRACT

Various options are applicable for the removal of water pollutants included reverse osmosis, ion exchange, coagulation, co-precipitation, catalytic reduction, herbal filtration, electrodialysis and adsorption. This paper deals with the sorption phenomena for the removal of pollutants from drinking water. Attempts have been made to use low cost sorbents developed by pretreatment/activation/impregnation with alkalis, acids, iron oxide, manganese dioxide, ferric chloride, alum, lime, aluminum salts with natural products/indigenous minerals viz. activated alumina, activated carbon, groundnut husk, saw dust, chemically coated sand, fly ash, zeolites, clay minerals and other plant products. Application of Freundich and Langmuir isotherms were used to assess the adsorption capacity. Equilibrium isotherms were determined at optimum temperature and pH to characterize the sorption process. Statistical parameters such as mass transfer coefficients, multiple regression analysis were applied to establish the mechanism. It is suggested that the characterization of suitable, and exhausted sorbent through the application of fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF) is essential to establish its surface bonding. Scope for safety evaluation and risk assessment to human and biosphere may provide the guideline and predication to the regulatory agencies for its sustainable use and safe disposal The ecotoxicological assessment of the leachates and low cost removal technology are discussed in this paper.


Subject(s)
Adsorption , Hydrogen-Ion Concentration , Models, Chemical , Regression Analysis , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Temperature , Water Pollutants, Chemical/analysis , Water Purification/methods , Water Supply/analysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL