Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2022 Sep; 60(9): 647-658
Article | IMSEAR | ID: sea-222527

ABSTRACT

Aspergillus sp. is widely distributed in nature and plays significant roles in the degradation of lignocellulose biomass and extensively used in bioprocess and fermentation technology and many species are also a generally regarded safe. Many of the Aspergillus species are established cell factories due to their inherent capacity in secreting large number of hydrolytic enzymes. With the advent of next generation genomic technologies and metabolic engineering technologies, the production potential of Aspergillus cell factory has improved over the years. Various genome editing tools has been developed for Aspergillus like engineered nucleases, zinc finger nucleases, TALEN and CRISPR-Cas9 system. Currently, the CRISPR/Cas9-based technique is extensively used to enhance the effectiveness of gene manipulation in model system Aspergillus nidulans and other strains like Aspergillus oryzae, Aspergillus niger and Aspergillus fumigatus. This review describes the recent developments of genome editing technologies in Aspergillus the synthesis of heterologous proteins and secondary metabolites in the Aspergillus species.

2.
Indian J Exp Biol ; 2018 Jul; 56(7): 511-518
Article | IMSEAR | ID: sea-190964

ABSTRACT

Polyethylene furanoate (PEF), made of 2,5-furan dicarboxylic acid (FDCA), has immense application value and can play a role in reducing the dependence of non-renewable energy sources by replacing the petroleum based products such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). The conventional chemical process for production of FDCA via oxidation of 5-hydroxymethyl furfuraldehyde (HMF) requires high temperature, high pressure, metal salts, organic solvents and toxic chemicals. Further, purification of FDCA makes the processes expensive as well as generates considerable pollutants and eco-friendly. The alternative bio-based approach, microbial conversion of substrates such as HMF, fructose and renewable biomass to FDCA sounds promising. In the present study, several soil isolates were evaluated for production of FDCA and one isolate, Enterobacter sp., showed potential for conversion of 5-(hydroxymethyl)furfural (HMF) to FDCA with an yield of 0.07g/L FDCA from 0.5g/L HMF in mineral salt media at 14 days of incubation. Changing the production media with 0.25% glucose and 0.25% glycerol showed an inhibition in the FDCA production by 7- and 2-folds, respectively.

3.
Indian J Exp Biol ; 2018 Jul; 56(7): 493-497
Article | IMSEAR | ID: sea-190962

ABSTRACT

Agricultural crop residues serve as a renewable source for production of bioethanol and other value added chemicals. Optimization of enzymatic saccharification may ensure cost-effective production of bioethanol and other industrially important products. Here, we attempted optimization of various process variables affecting enzymatic hydrolysis of microwave-assisted acid pretreated chili post-harvest residue was evaluated by adopting statistical design experiments. The optimum conditions of enzymatic hydrolysis were solid loading of 15% (w/w), cellulase loading of 20 FPU per gram of pretreated biomass and incubation time of 12 h. The high solid loading, low cellulase loading and low incubation time may lead to better process economics. Maximum reducing sugar yield of 0.205 g/g was observed. Fermentation inhibitors, such as furfural and 5-hydroxymethylfurfural were absent in the hydrolysate obtained after enzymatic saccharification of pretreated biomass and were found suitable for the production of various value added products like xylanases, bioethanol and biopolymer (poly-3-hydroxybutyrate).

4.
Indian J Exp Biol ; 2015 Jun; 53(6): 364-370
Article in English | IMSEAR | ID: sea-158511

ABSTRACT

Fungal cultures were isolated from soil samples collected from the Western Ghats regions of Kerala. Primary screening of isolated strains were done by Sudan black staining method and 15 lipid producing cultures were isolated. The fatty acid profiling of the positive strains were analyzed for docosahexaenoic acid (DHA) production. Selected oleaginous cultures were grown in submerged culture condition to study the biomass yield and poly unsaturated fatty acid, DHA production. The optimization of production process under submerged conditions was carried out using statistical experimental design and confirmation of DHA was done by GC analysis. Maximum DHA production of 150 mg/l was achieved on 4 days of incubation at submerged condition in the presence of glucose as carbon source.


Subject(s)
Docosahexaenoic Acids/biosynthesis , Docosahexaenoic Acids/chemical synthesis , Docosahexaenoic Acids/isolation & purification , Fusarium/chemistry , Fusarium/classification , Fusarium/isolation & purification , India , Investigative Techniques/methods
5.
Indian J Exp Biol ; 2015 Jun; 53(6): 356-363
Article in English | IMSEAR | ID: sea-158505

ABSTRACT

Here, we described the production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Various process parameters affecting xylanase production by B. pumilus were optimized by adopting a Plackett-Burman design (PBD) as well as Response surface methodology (RSM). These statistical methods aid in improving the enzyme yield by analysing the individual crucial components of the medium. Maximum production was obtained with 4% yeast extract, 0.08% magnesium sulphate, 30 h of inoculum age, incubation temperature of 33.5 °C and pH 9.0. Under optimized conditions, the xylanase activity was 372 IU/ml. Media engineering improved a 5-fold increase in the enzyme production. Scanning electron microscopy (SEM) showed significant changes on the surface of xylanase treated pulps as a result of xylan hydrolysis. Increased roughness of paper carton fibres was apparent in scanning electron micrograph due to opening of the micro fibrils present on the surface by xylanase action. The untreated pulp did not show any such change. These results demonstrated that the B. pumilus MTCC 5015 xylanase was effective in bio-bleaching of paper carton.


Subject(s)
Bacillus/chemistry , Bacillus/classification , Biotechnology , Cellulose/metabolism , Fermentation , Paper , Xylosidases/biosynthesis , Xylosidases/chemical synthesis
6.
Indian J Exp Biol ; 2014 Nov; 52(11): 1025-1035
Article in English | IMSEAR | ID: sea-153782

ABSTRACT

After cellulose, chitin is the second most abundant organic and renewable polysaccharide in nature. This polymer is degraded by enzymes called chitinases which are a part of the glycoside hydrolase family. Chitinases have many important biophysiological functions and immense potential applications especially in control of phytopathogens, production of chito-oligosaccharides with numerous uses and in treatment and degradation of chitinous biowaste. At present many microbial sources are being explored and tapped for chitinase production which includes potential fungal cultures. With advancement in molecular biology and gene cloning techniques, research on fungal chitinases have made fast progress. The present review focuses on recent advances in fungal chitinases, containing a short introduction to types of chitinases, their fermentative production, purification and characterization and molecular cloning and expression.


Subject(s)
Chitin/metabolism , Chitinases/classification , Chitinases/genetics , Chitinases/isolation & purification , Chitinases/metabolism , Cloning, Molecular , Fermentation , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Fungi/enzymology , Fungi/growth & development , Industrial Microbiology/methods , Mycology/methods
7.
Braz. arch. biol. technol ; 57(5): 644-652, Sep-Oct/2014. tab, graf
Article in English | LILACS | ID: lil-723066

ABSTRACT

Poly-ß-hydroxybutyrate (PHB) is a biodegradable intracellular microbial product produced by many bacteria and it is comparable to some of the petrochemical derived thermoplastics such as polypropylene. One of the main barriers for the commercial exploitation is the high cost of the substrate for the production of biopolymer. The utilization of mixed microbial cultures facilitates the use of complex substrates thereby reducing the cost of PHB production. In the present study, mixed culture systems were evaluated for PHB production. Bacillus firmus NII 0830 was used for the production of PHB since it accumulates a large amount of PHB and a second organism Lactobacillus delbrueckii NII 0925 was used to provide lactic acid. FTIR and 1H NMR analyses revealed that the PHB extracted from pure culture and mixed culture showed exact match to that of standard PHB. Biodegradation studies of the PHB blends showed 87% degradation. It was also found that a consortium of organisms degraded the films faster than a single organism.

8.
Indian J Exp Biol ; 2013 Nov; 51(11): 1012-1017
Article in English | IMSEAR | ID: sea-149411

ABSTRACT

Production of fuel ethanol from lignocellulosic biomass conventionally includes biomass pretreatment, hydrolysis, and fermentation. The liquor generated during dilute acid pretreatment of biomass contains considerable quantities of pentose sugars as well as various degradation products of sugars and lignin, like furfural, hydroxymethyl furfural (HMF), organic acids, aldehydes and others, which are known to be inhibitory for microbial growth. This pentose rich liquor is a potent resource which can be used to produce alcohol or other value added metabolites by microbial fermentation. However, the presence of these inhibitory compounds is a major hindrance and their removal is essential for efficient utilization of this byproduct stream. In the present work, the polymeric adsorbent resins, XAD-4, XAD-7 and XAD-16 were evaluated for their ability to adsorb fermentation inhibitors like furfural and HMF from the acid pretreated liquor. These resins could remove 55-75% of furfural and 100% of HMF and more than 90% sugar remained un-adsorbed in the pretreated liquor. Desorption of furfural from stationary phase was evaluated by using ethanol and hot water. The results suggest that these polymeric resins may be used for detoxification of acid pretreatment liquor with selective removal of sugar degradation products without affecting the sugar content in the solution.


Subject(s)
Acids/chemistry , Adsorption , Biomass , Fermentation , Lignin/chemistry , Lignin/metabolism , Polymers/chemistry
9.
Braz. arch. biol. technol ; 54(4): 783-794, July-Aug. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-595633

ABSTRACT

The aim of this work was to study the production of poly-3-hydroxybutyrate (PHB) under nitrogen limited conditions by Bacillus sphaericus NII 0838 using crude glycerol from biodiesel industry as sole carbon source. Effect of various process parameters on PHB production such as glycerol concentration, inoculum size and pH of the medium were optimized. Characterization of extracted PHB was carried out by FT-IR, ¹H and 13C NMR. Results showed that the bacterial culture accumulated about 31 percent PHB in crude glycerol medium. The extracted PHB was blended with other polymers to improve its physical characteristics. The thermal properties of the polymer like melting temperature (Tm) and heat of fusion (ΔHf) were determined using DSC.

SELECTION OF CITATIONS
SEARCH DETAIL