Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Korean Journal of Radiology ; : 1151-1163, 2023.
Article in English | WPRIM | ID: wpr-1002400

ABSTRACT

Objective@#To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model. @*Materials and Methods@#A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7–12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343;median age [IQR], 10 [4–15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5–14] years; male:female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model). @*Results@#Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2. @*Conclusion@#The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.

2.
Ultrasonography ; : 761-769, 2022.
Article in English | WPRIM | ID: wpr-969220

ABSTRACT

Purpose@#This study evaluated the accuracy of attenuation imaging (ATI) for the assessment of hepatic steatosis in pediatric patients, in comparison with the FibroScan vibration-controlled transient elastography controlled attenuation parameter (CAP). @*Methods@#Consecutive pediatric patients referred for evaluation of obesity who underwent both ATI and FibroScan between February 2020 and September 2021 were included. The correlation between attenuation coefficient (AC) and CAP values was assessed using the Spearman test. The AC cutoff value for discriminating hepatic steatosis corresponding to a CAP value of 241 dB/m was calculated. Multivariable linear regression analysis was performed to estimate the strength of the association between AC and CAP. The diagnostic accuracy of AC cutoffs was estimated using the imperfect gold-standard methodology based on a two-level Bayesian latent class model. @*Results@#Seventy patients (median age, 12.5 years; interquartile range, 11.0 to 14.0 years; male:female, 58:12) were included. AC and CAP showed a moderate-to-good correlation (ρ =0.646, P<0.001). Multivariable regression analysis affirmed the significant association between AC and CAP (P<0.001). The correlation was not evident in patients with a body mass index ≥30 kg/m2 (ρ=-0.202, P=0.551). Linear regression revealed that an AC cutoff of 0.66 dB/cm/MHz corresponded to a CAP of 241 dB/m (sensitivity, 0.93; 95% confidence interval [CI], 0.85 to 0.98 and specificity, 0.87; 95% CI, 0.56 to 1.00). @*Conclusion@#ATI showed an acceptable correlation with CAP values in a pediatric population, especially in patients with a body mass index <30 kg/m2. An AC cutoff of 0.66 dB/cm/MHz, corresponding to a CAP of 241 dB/m, can accurately diagnose hepatic steatosis.

3.
Yonsei Medical Journal ; : 683-691, 2022.
Article in English | WPRIM | ID: wpr-939385

ABSTRACT

Purpose@#To evaluate the applicability of Greulich-Pyle (GP) standards to bone age (BA) assessment in healthy Korean children using manual and deep learning-based methods. @*Materials and Methods@#We collected 485 hand radiographs of healthy children aged 2–17 years (262 boys) between 2008 and 2017. Based on GP method, BA was assessed manually by two radiologists and automatically by two deep learning-based BA assessment (DLBAA), which estimated GP-assigned (original model) and optimal (modified model) BAs. Estimated BA was compared to chronological age (CA) using intraclass correlation (ICC), Bland-Altman analysis, linear regression, mean absolute error, and root mean square error. The proportion of children showing a difference >12 months between the estimated BA and CA was calculated. @*Results@#CA and all estimated BA showed excellent agreement (ICC ≥0.978, p12 months in 44.3%, 44.5%, 39.2%, and 36.1% for radiologist 1, radiologist 2, original, and modified DLBAA models, respectively. @*Conclusion@#Contemporary healthy Korean children showed different rates of skeletal development than GP standard-BA, and systemic bias should be considered when determining children’s skeletal maturation.

SELECTION OF CITATIONS
SEARCH DETAIL