Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Experimental Neurobiology ; : 45-56, 2018.
Article in English | WPRIM | ID: wpr-739521

ABSTRACT

In recent years, as the aging population grows, aging-induced cognitive impairments including dementia and Alzheimer's disease (AD) have become the biggest challenges for global public health and social care. Therefore, the development of potential therapeutic drugs for aging-associated cognitive impairment is essential. Metabolic dysregulation has been considered to be a key factor that affects aging and dementia. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a primary sensor of cellular energy states and regulates cellular energy metabolism. Metformin (1,1-dimethylbiguanide hydrochloride) is a well-known AMPK activator and has been widely prescribed for type 2 diabetes mellitus (T2DM). Since the incidence of T2DM and dementia increases with aging, metformin has been considered to be one of the most promising drugs to target dementia and its related disorders. To that end, here, we tested the efficacy of metformin and HL271, a novel metformin derivative, in aging-induced cognitive decline. Water (control), metformin (100 mg/kg) or HL271 (50 mg/kg) were orally administered to aged mice for two months; then, the mice were subjected to behavioral tests to measure their cognitive function, particularly their contextual, spatial and working memory. AMPK phosphorylation was also measured in the drug-treated mouse brains. Our results show that oral treatment with HL271 (50 mg/kg) but not metformin (100 mg/kg) improved cognitive decline in aged mice. AMPK activation was correlated with behavior recovery after aging-induced cognitive decline. Taken together, these results suggest that the newly synthesized AMPK activator, HL271, could be a potential therapeutic agent to treat age-related cognitive decline.


Subject(s)
Animals , Mice , Adenosine Monophosphate , Aging , Alzheimer Disease , AMP-Activated Protein Kinases , Behavior Rating Scale , Brain , Cognition , Cognition Disorders , Dementia , Diabetes Mellitus , Diabetes Mellitus, Type 2 , Energy Metabolism , Incidence , Memory, Short-Term , Metformin , Phosphorylation , Protein Kinases , Public Health , Water
2.
Journal of the Korean Cancer Association ; : 200-209, 2000.
Article in Korean | WPRIM | ID: wpr-11902

ABSTRACT

PURPOSE: To overcome the limitations of cancer gene therapy using replication-incom- petent adenovirus, we generated E1B 55 kD-deleted adenovirus (YKL-1) by polymerase chain reaction (PCR) and homologous recombination. We then investigated tumor-specific virus replication and cytotoxicity of YKL-1 in vitro and in vivo. MATERIALS AND METHODS: YKL-1 was constructed by reintroducting E1A and E1B 19 kD into pTG-CMV El/E3-deficient adenoviral vector and inducing homologous recombination in E. coli. The recombinant vector pYKL-1 was transfected into 293 cells to generate YKL-1. The properties of newly constructed YKL-1 was defined by PCR and immuno- blotting analysis. Virus replication was examined by infecting human normal and cancer cells on 6-wells at multiplicity of infection (MOI) of 10 for 3 days. Virus was then recovered and titered. Cytopathic effect was analyzed by infecting human normal and cancer cells on 24-wells at MOIs of 10, 1 or 0.1 for 7 to 10 days and staining them with crystal violet solution. Inhibition of tumor growth was examined in human cancer cell xenografts in nu/nu mice by intratumoral injection of YKL-l. RESULTS: PCR and immunoblotting analysis confirmed that YKL-1 contained E1A and E1B 19 kD but not E1B 55 kD. In human normal cells, virus replication and subsequent cytopathic effect of E1B 55 kD-deleted adenovirus YKL-1 was markedly attenuated by larger than 2 to 3 log in magnitude, compared to that of wild-type ad-XJ. In contrast, YKL-1 was capable of replicating and inducing cytotoxicity i.n most human cancer cells. C33A and Hep3B containing p53 mutation were much more sensitive, whereas HeLa and H460 with wild type p53 were relatively resistant to YKL-1. Finally, the tumor growth was dramatically retarded by intratumoral injection of YKL-1 in C33A cervical cancer xenograft and the histology showed significant necrosis by intratumoral injection of YKL-1. CONCLUSION: The results here demonstrated the ability of preferential virus replication and cytotoxicity of ElB 55 kD-deleted adenovirus YKL-1 in human cancer cells. Therefore, these indicated a promising potential of YKL-1 as an antitumoral virus agent and a selective replication-competent virus vector.


Subject(s)
Animals , Humans , Mice , Adenoviridae , Genes, Neoplasm , Genetic Therapy , Gentian Violet , Heterografts , Homologous Recombination , Immunoblotting , Necrosis , Polymerase Chain Reaction , Uterine Cervical Neoplasms , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL