Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Journal of Andrology ; (6): 515-519, 2016.
Article in Chinese | WPRIM | ID: wpr-842849

ABSTRACT

Prostate cancer (PCa) testing is recommended by most authoritative groups for high-risk men including those with a family history of the disease. However, family history information is often limited by patient knowledge and clinician intake, and thus, many men are incorrectly assigned to different risk groups. Alternate methods to assess PCa risk are required. In this review, we discuss how genetic variants, referred to as PCa-risk single-nucleotide polymorphisms, can be used to calculate a genetic risk score (GRS). GRS assigns a relatively unique value to all men based on the number of PCa-risk SNPs that an individual carries. This GRS value can provide a more precise estimate of a man's PCa risk. This is particularly relevant in situations when an individual is unaware of his family history. In addition, GRS has utility and can provide a more precise estimate of risk even among men with a positive family history. It can even distinguish risk among relatives with the same degree of family relationships. Taken together, this review serves to provide support for the clinical utility of GRS as an independent test to provide supplemental information to family history. As such, GRS can serve as a platform to help guide-shared decision-making processes regarding the timing and frequency of PCa testing and biopsies.

2.
Asian Journal of Andrology ; (6): 509-514, 2016.
Article in Chinese | WPRIM | ID: wpr-842848

ABSTRACT

Current issues related to prostate cancer (PCa) clinical care (e.g., over-screening, over-diagnosis, and over-treatment of nonaggressive PCa) call for risk assessment tools that can be combined with family history (FH) to stratify disease risk among men in the general population. Since 2007, genome-wide association studies (GWASs) have identified more than 100 SNPs associated with PCa susceptibility. In this review, we discuss (1) the validity of these PCa risk-associated SNPs, individually and collectively; (2) the various methods used for measuring the cumulative effect of multiple SNPs, including genetic risk score (GRS); (3) the adequate number of SNPs needed for risk assessment; (4) reclassification of risk based on evolving numbers of SNPs used to calculate genetic risk, (5) risk assessment for men from various racial groups, and (6) the clinical utility of genetic risk assessment. In conclusion, data available to date support the clinical validity of PCa risk-associated SNPs and GRS in risk assessment among men with or without FH. PCa risk-associated SNPs are not intended for diagnostic use; rather, they should be used the same way as FH. Combining GRS and FH can significantly improve the performance of risk assessment. Improved risk assessment may have important clinical utility in targeted PCa testing. However, clinical trials are urgently needed to evaluate this clinical utility as well as the acceptance of GRS by patients and physicians.

SELECTION OF CITATIONS
SEARCH DETAIL