Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 40(4): 367-375, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-959251

ABSTRACT

Objective: To evaluate the effects of Hypericum perforatum (hypericum) on cognitive behavior and neurotrophic factor levels in the brain of male and female rats. Methods: Male and female Wistar rats were treated with hypericum or water during 28 days by gavage. The animals were then subjected to the open-field test, novel object recognition and step-down inhibitory avoidance test. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-line derived neurotrophic factor (GDNF) levels were evaluated in the hippocampus and frontal cortex. Results: Hypericum impaired the acquisition of short- and long-term aversive memory in male rats, evaluated in the inhibitory avoidance test. Female rats had no immediate memory acquisition and decreased short-term memory acquisition in the inhibitory avoidance test. Hypericum also decreased the recognition index of male rats in the object recognition test. Female rats did not recognize the new object in either the short-term or the long-term memory tasks. Hypericum decreased BDNF in the hippocampus of male and female rats. Hypericum also decreased NGF in the hippocampus of female rats. Conclusions: The long-term administration of hypericum appears to cause significant cognitive impairment in rats, possibly through a reduction in the levels of neurotrophic factors. This effect was more expressive in females than in males.


Subject(s)
Animals , Male , Female , Plant Extracts/pharmacology , Cognition/drug effects , Hypericum , Frontal Lobe/metabolism , Hippocampus/metabolism , Nerve Growth Factors/analysis , Plant Extracts/administration & dosage , Random Allocation , Sex Factors , Treatment Outcome , Rats, Wistar , Models, Animal , Pattern Recognition, Physiological/drug effects , Dose-Response Relationship, Drug , Frontal Lobe/drug effects , Hippocampus/drug effects , Locomotion/drug effects , Memory/drug effects , Nerve Growth Factors/drug effects
2.
An. acad. bras. ciênc ; 89(2): 1133-1141, Apr.-June 2017. graf
Article in English | LILACS | ID: biblio-886699

ABSTRACT

ABSTRACT Studies have shown that schizophrenic patients seem to have nutritional deficiencies. Ascorbic acid (AA) has an important antioxidant effect and neuromodulatory properties. The aim of this study was to evaluate the effects of AA on locomotor activity and the acetylcholinesterase activity (AChE) in an animal model of schizophrenia (SZ). Rats were supplemented with AA (0.1, 1, or 10 mg/kg), or water for 14 days (gavage). Between the 9th and 15th days, the animals received Ketamine (Ket) (25 mg/kg) or saline (i.p). After the last administration (30 min) rats were subjected to the behavioral test. Brain structures were dissected for biochemical analysis. There was a significant increase in the locomotor activity in Ket treated. AA prevented the hyperlocomotion induced by ket. Ket also showed an increase of AChE activity within the prefrontal cortex and striatum prevented by AA. Our data indicates an effect for AA in preventing alterations induced by Ket in an animal model of SZ, suggesting that it may be an adjuvant approach for the development of new therapeutic strategies within this psychiatric disorder.


Subject(s)
Animals , Male , Acetylcholinesterase/analysis , Acetylcholinesterase/drug effects , Ascorbic Acid/pharmacology , Schizophrenia/enzymology , Locomotion/drug effects , Antioxidants/pharmacology , Acetylcholinesterase/physiology , Schizophrenia/prevention & control , Excitatory Amino Acid Antagonists , Dietary Supplements , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/enzymology , Ketamine , Locomotion/physiology
4.
Article in English | LILACS | ID: lil-691407

ABSTRACT

Mood disorders are a leading cause of morbidity and mortality, yet their underlying pathophysiology remains unclear. Animal models serve as a powerful tool for investigating the neurobiological mechanisms underlying psychiatric disorders; however, no animal model developed to date can fully mimic the “corresponding” human psychiatric disorder. In this scenario, the development of different animal models contributes to our understanding of the neurobiology of these disorders and provides the possibility of preclinical pharmacologic screening. The present review seeks to provide a comprehensive overview of traditional and recent animal models, recapitulating different features and the possible pathologic mechanisms of mood disorders emulated by these models.


Subject(s)
Animals , Mice , Rats , Bipolar Disorder/physiopathology , Depressive Disorder/physiopathology , Disease Models, Animal , Mood Disorders/physiopathology , Animals, Laboratory , Bipolar Disorder/etiology , Depressive Disorder/etiology , Mood Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL