Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomolecules & Therapeutics ; : 48-54, 2022.
Article in English | WPRIM | ID: wpr-913713

ABSTRACT

GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gα i/o and Gα q/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of preexisting compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

2.
Experimental & Molecular Medicine ; : 60-67, 2012.
Article in English | WPRIM | ID: wpr-211717

ABSTRACT

Anterior gradient-2 (AGR2) promotes tumor growth, cell migration, and cellular transformation, and is one of the specific mRNA markers for circulating tumor cells in patients with gastrointestinal cancer. We investigated the feasibility of AGR2 as a potent antigen for tumor immunotherapy against colorectal cancer (CRC) cells using dendritic cells (DCs) transduced with a recombinant adenovirus harboring the AGR2 gene (AdAGR2). DCs transduced with a recombinant adenovirus encoding the AGR2 gene (AdAGR2/DCs) were characterized. These genetically-modified DCs expressed AGR2 mRNA as well as AGR2 protein at a multiplicity of infection of 1,000 without any significant alterations in DC viability and cytokine secretion (IL-10 and IL-12p70) compared with unmodified DCs as a control. In addition, AdAGR2 transduction did not impair DC maturation, but enhanced expression of HLA-DR, CD80, and CD86. AdAGR2/DCs augmented the number of IFN-gamma-secreting T-cells and elicited potent AGR2-specific cytotoxic T lymphocytes capable of lysing AGR2-expressing CRC cell lines. These results suggest that AGR2 act as a potentially important antigen for immunotherapy against CRC in clinical applications.


Subject(s)
Humans , Adenoviridae , Antigen Presentation/genetics , Antigens, Neoplasm/immunology , Carcinoma/therapy , Cell Line, Tumor , Colorectal Neoplasms/therapy , Cytotoxicity, Immunologic/genetics , Dendritic Cells/immunology , Immunotherapy, Adoptive , Interferon-gamma/metabolism , Lymphocyte Activation/genetics , Proteins/genetics , T-Lymphocytes, Cytotoxic/immunology , Transduction, Genetic , Transgenes/genetics , Biomarkers, Tumor/immunology
3.
Korean Journal of Otolaryngology - Head and Neck Surgery ; : 726-728, 2010.
Article in Korean | WPRIM | ID: wpr-648714

ABSTRACT

With a surge in the population of immunocompromised patients, the incidence of laryngeal fungal infection has also been increased. Infection by aspergillus, which is a kind of mold, or a filamentous fungus, occurs rarely in larynx. Furthermore, most aspergillosis of the upper airway is an extension of the pulmonary or systemic aspergillosis in the immunocompromised host. So, the primary laryngeal aspergillosis that occurrs as an isolated laryngeal infection of aspergillus without other aerodigestive tract extension is very rarely encountered. We present a case of primary laryngeal aspergillosis misconceived as a vocal cord cyst in a 24-year-old female who had no past history of immune deficiency, voice abuse or steroid use.


Subject(s)
Female , Humans , Young Adult , Aspergillosis , Aspergillus , Fungi , Immunocompromised Host , Incidence , Larynx , Vocal Cords , Voice
4.
Experimental & Molecular Medicine ; : 407-419, 2010.
Article in English | WPRIM | ID: wpr-27762

ABSTRACT

Dendritic cells (DCs) play a role in natural killer (NK) cell activation, while NK cells are also able to activate and mature DCs. Toll-like receptors (TLRs) on the surface of DCs and NK cells induce the maturation and activation of these cells when engaged with their cognate ligand. We investigated to generate potent DCs by maturation with NK cells in the presence of TLR agonist in vitro and tested the efficacy of these DC vaccinations in mouse colon cancer model. The optimal ratios of DCs versus NK cells were 1:1 to 1:2. Immature DCs were mature with NK cells in the presence of lipopolysaccharide, which is TLR4 agonist, and further addition of IL-2 induced phenotypically and functionally mature bone marrow-derived DCs. These potent DCs exhibited not only high expression of several costimulatory molecules and high production of IL-12p40 and IL-12p70, but also high allogeneic T cells stimulatory capacity, and the induction of the high activities to generate tumor-specific CTLs. Consistently, vaccination with these DCs efficiently inhibited CT-26 tumor growth in mouse colon cancer model when compared to other vaccination strategies. Interestingly, combination therapy of these DC-based vaccines and with low-dose cyclophosphamide showed dramatic inhibition effects of tumor growth. These results suggest that the DCs maturated with NK cells in the presence of TLR agonist are potent inducer of antitumor immune responses in mouse model and may provide a new source of DC-based vaccines for the development of immunotherapy against colon cancer.


Subject(s)
Animals , Female , Mice , Cancer Vaccines/immunology , Carcinoma/immunology , Cell Line, Tumor , Cells, Cultured , Colonic Neoplasms/immunology , Dendritic Cells/drug effects , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Lipopolysaccharides/pharmacology , Mice, Inbred BALB C , Toll-Like Receptor 4/agonists , Toll-Like Receptors/agonists
5.
Experimental & Molecular Medicine ; : 651-661, 2010.
Article in English | WPRIM | ID: wpr-162252

ABSTRACT

Successful hematopoietic stem cell transplantation (HSCT) involves the restoration of hematopoietic function after engraftment, arising from the differentiation and proliferation of hematopoietic stem cells. Several factors could influence the course of allogeneic-HSCT (allo-HSCT). Therefore, knowledge of serum proteome changes during the allo-HSCT period might increase the efficacy of diagnosis and disease prevention efforts. This study conducted proteomic analyses to find proteins that were significantly altered in response to allo-HSCT. Sera from five representative patients who underwent allo-HSCT were analyzed by 2-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry, and were measured on a weekly basis before and after allo-HSCT in additional 78 patients. Fourteen protein spots showing changes in expression were further examined, and most proteins were identified as acute phase proteins (APPs). Studies of 78 additional patients confirmed that C-reactive protein (CRP) and haptoglobin undergo expression changes during allo-HSCT and thus may have the potential to serve as representative markers of clinical events after allo-HSCT. Maximal CRP level affected the development of major transplant-related complications (MTCs) and other problems such as fever of unknown origin. Particularly, an increase in CRP level 21 days after allo-HSCT was found to be an independent risk factor for MTC. Maximal haptoglobin and haptoglobin level 14 days after allo-HSCT were predictive of relapses in underlying hematologic disease. Our results indicated that CRP and haptoglobin were significantly expressed during allo-HSCT, and suggest that their level can be monitored after allo-HSCT to assess the risks of early transplant-related complications and relapse.


Subject(s)
Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Biomarkers , C-Reactive Protein/metabolism , Haptoglobins/metabolism , Hematopoietic Stem Cell Transplantation/adverse effects , Proteome/metabolism , Proteomics , Transplantation Conditioning , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL