Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Immune Network ; : e14-2021.
Article in English | WPRIM | ID: wpr-914535

ABSTRACT

Scrub typhus develops after the individual is bitten by a trombiculid mite infected with Orientia tsutsugamushi. Since it has been reported that pneumonia is frequently observed in patients with scrub typhus, we investigated whether intranasal (i.n.) vaccination with the outer membrane protein of O. tsutsugamushi (OMPOT) would induce a protective immunity against O. tsutsugamushi infection. It was particular interest that when mice were infected with O. tsutsugamushi, the bacteria disseminated into the lungs, causing pneumonia. The i.n. vaccination with OMPOT induced IgG responses in serum and bronchoalveolar lavage (BAL) fluid. The anti-O. tsutsugamushi IgA Abs in BAL fluid after the vaccination showed a high correlation of the protection against O. tsutsugamushi. The vaccination induced strong Ag-specific Th1 and Th17 responses in the both spleen and lungs. In conclusion, the current study demonstrated that i.n. vaccination with OMPOT elicited protective immunity against scrub typhus in mouse with O. tsutsugamushi infection causing subsequent pneumonia.

2.
Clinical and Experimental Vaccine Research ; : 136-139, 2019.
Article in English | WPRIM | ID: wpr-763366

ABSTRACT

Vaccination is one of the most successful strategies to prevent diseases caused by pathogens. Although various expression systems including Escherichia coli, yeast, insect, and mammalian cells are currently used for producing many of vaccines, these conventional platforms have the limitation of post-translational modification, high cost, and expensive scalability. In this respect, the plant-based expression system has been considered as an attractive platform to produce recombinant vaccines due to fast, cost-effective and scalable production as well as safety. This review discusses the development of plant-derived vaccines and the current stage of plant-based expression system.


Subject(s)
Humans , Antibodies , Efficiency , Escherichia coli , Insecta , Plants , Plants, Genetically Modified , Protein Processing, Post-Translational , Vaccination , Vaccines , Vaccines, Synthetic , Yeasts
3.
Immune Network ; : 81-85, 2013.
Article in English | WPRIM | ID: wpr-67403

ABSTRACT

The mucosal surfaces are constantly exposed to incoming pathogens which can cause infections that result in severe morbidity and/or mortality. Studies have reported that mucosal immunity is important for providing protection against these pathogens and that mucosal vaccination is effective in preventing local infections. For many years, the sublingual mucosa has been targeted to deliver immunotherapy to treat allergic hypersensitivities. However, the potential of vaccine delivery via sublingual mucosal has received little attention until recently. Recent studies exploring such potential have documented the safety and effectiveness of sublingual immunization, demonstrating the ability of sublingual immunization to induce both systemic and mucosal immune responses against a variety of antigens, including soluble proteins, inter particulate antigens, and live-attenuated viruses. This review will summarize the recent findings that address the promising potential of sublingual immunization in proving protection against various mucosal pathogens.


Subject(s)
Hypersensitivity , Immunity, Mucosal , Immunization , Immunotherapy , Mucous Membrane , Proteins , Vaccination , Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL