Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Veterinary Science ; : 145-150, 2018.
Article in English | WPRIM | ID: wpr-758769

ABSTRACT

Focal vertebral bone density changes were assessed in vertebral computed tomography (CT) images obtained from clinically healthy dogs without diseases that affect bone density. The number, location, and density of lesions were determined. A total of 429 vertebral CT images from 20 dogs were reviewed, and 99 focal vertebral changes were identified in 14 dogs. Focal vertebral bone density changes were mainly found in thoracic vertebrae (29.6%) as hyperattenuating (86.9%) lesions. All focal vertebral changes were observed at the vertebral body, except for a single hyperattenuating change in one thoracic transverse process. Among the hyperattenuating changes, multifocal changes (53.5%) were more common than single changes (46.5%). Most of the hypoattenuating changes were single (92.3%). Eight dogs, 40% of the 20 dogs in the study and 61.6% of the 13 dogs showing focal vertebral changes in the thoracic vertebra, had hyperattenuating changes at the 7th or 8th thoracic vertebra. Our results indicate that focal changes in vertebral bone density are commonly identified on vertebral CT images in healthy dogs, and these changes should be taken into consideration on interpretation of CT images.


Subject(s)
Animals , Dogs , Bone Density , Spine , Thoracic Vertebrae
2.
Journal of Veterinary Science ; : 507-514, 2017.
Article in English | WPRIM | ID: wpr-16833

ABSTRACT

This study evaluated whether renal perfusion changes can be noninvasively estimated by using contrast-enhanced ultrasonography (CEUS) in renal ischemia-reperfusion injury and investigated the correlation between renal perfusion measured by CEUS and necrosis and apoptosis of renal tubular epithelial cells. In six dogs with experimentally induced renal ischemia-reperfusion injury, changes in time to peak intensity, peak intensity, and area under the curve were measured on CEUS. Peak intensity and area under the curve of the renal cortex began to decrease on day 1 (about 20% lower than baseline) and reached the lowest levels (about 50% of baseline) on day 4. They then gradually increased until day 10, at which time peak intensity was about 87% and area under the curve was about 95% of baseline; neither fully recovered. Both parameters were strongly correlated with the necrosis scores on histopathologic examination on day 4 (r = −0.810 of peak intensity and r = −0.886 of area under the curve). CEUS allowed quantitative evaluation of perfusion changes in acute renal ischemia-reperfusion injury, and CEUS results were correlated with renal tubular damage on histopathologic examination. Thus, CEUS could be a noninvasive, quantitative diagnostic method for determining progress of renal ischemia-reperfusion injury.


Subject(s)
Animals , Dogs , Apoptosis , Epithelial Cells , Evaluation Studies as Topic , Methods , Necrosis , Perfusion , Reperfusion Injury , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL