Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Korean Journal of Veterinary Research ; : 49-54, 2013.
Article in Korean | WPRIM | ID: wpr-147388

ABSTRACT

To investigate the transmission pattern of geographical area and temporal trends of the 2010~2011 foot-and-mouth disease (FMD) outbreaks in Korea, and to explore temporal intervals at which spatial clustering of FMD cases space-time analysis based on georeferenced database of 3,575 burial sites, from 30 November 2010 to 23 February 2011, was performed. The cases represent approximately 98.1% of all infected farms (n = 3,644) during the same period. Descriptive maps of spatial patterns of the outbreaks were generated by ArcGIS. Spatial Scan Statistics, using SaTScan software, was applied to investigate geographical clusters of FMD cases across the country. Overall, spatial heterogeneity was identified, and the transmission pattern was different by province. Cattle have more clusters in number but smaller in size, as compared to the swine population. In addition, spatiotemporal analysis and the comparison of clustering patterns between the first 7 days and days 8 to 14 of the outbreak revealed that the strongest spatial clustering was identified at the 7-day interval, although clustering over longer intervals (8~14 days) was also observed. We further discussed the importance of time period elapsed between FMD-suspected notice and the date of confirmation, and emphasized the necessity of region-specific and species-specific control measures.


Subject(s)
Animals , Cattle , Burial , Disease Outbreaks , Foot-and-Mouth Disease , Geographic Information Systems , Korea , Population Characteristics , Republic of Korea , Spatial Analysis , Spatio-Temporal Analysis , Swine
2.
Immune Network ; : 265-273, 2009.
Article in English | WPRIM | ID: wpr-60578

ABSTRACT

BACKGROUND: Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. METHODS: VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. RESULTS: Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. CONCLUSION: The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.


Subject(s)
Animals , Humans , Mice , Antibodies , Clone Cells , DNA , DNA, Recombinant , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte , Foot-and-Mouth Disease , Foot-and-Mouth Disease Virus , Immunity, Cellular , Livestock , Picornaviridae , Proteins , RNA-Dependent RNA Polymerase , RNA Viruses , Vaccines , Virion , Viruses
SELECTION OF CITATIONS
SEARCH DETAIL