Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1712-1718, 2021.
Article in Chinese | WPRIM | ID: wpr-881565

ABSTRACT

Methotrexate (MTX) injection has a short half-life and significant toxic side effects. In order to overcome the demerits of MTX injection, MTX@COF was prepared for subcutaneous injection by loading MTX in crosslinked cyclodextrin metal-organic framework (COF) in this study. The cationic lipid material (2, 3-dioleoyl-propyl)-trimethylamine (DOTAP) was then coated on the MTX@COF surface by solvent evaporation. Different surface charge characteristics were observed in the coated MTX@COF@DOTAP with no significant change in particle morphology. The in vitro release behaviors of sustained-release particles were investigated in water and phosphate buffer (pH 7.4), and the in vivo release characteristics were evaluated for pharmacokinetics in rats. The in vitro release results showed that the cumulative release of MTX, MTX@COF and MTX@COF@DOTAP within 6 h was 92.70%, 36.31% and 18.19% in water, respectively; the cumulative release of MTX, MTX@COF and MTX@COF@DOTAP within 4 h was 90.82%, 79.37% and 58.30% in phosphate buffer, respectively; the results showed that MTX@COF can significantly delay the release of MTX, the modification to MTX@COF by DOTAP can further delay the release of MTX. Pharmacokinetic studies in rats showed that the mean retention time [MRT(0-t)] and the time to peak (Tmax) of the subcutaneous injection of MTX@COF@DOTAP group were significantly prolonged compared with the MTX@COF group and the MTX group. The area under the concentration-time curve [AUC(0-t)] of the MTX@COF@DOTAP subcutaneous injection group was 1.8 times high as that of the MTX group. In this study, MTX@COF@DOTAP particles had a certain sustained-release effect, and could prolong the bioavailability of MTX by subcutaneous injection, which provided a new idea for the development of new MTX dosage forms.

2.
Acta Pharmaceutica Sinica ; (12): 1167-1173, 2015.
Article in Chinese | WPRIM | ID: wpr-257011

ABSTRACT

The association rate constant and dissociation rate constant are important parameters of the drug-cyclodextrin supermolecule systems, which determine the dissociation of drugs from the complex and the further in vivo absorption of drugs. However, the current studies of drug-cyclodextrin interactions mostly focus on the thermodynamic parameter of equilibrium constants (K). In this paper, a method based on quantitative high performance affinity chromatography coupled with mass spectrometry was developed to determine the apparent dissociation rate constant (k(off,app)) of drug-cyclodextrin supermolecule systems. This method was employed to measure the k(off,app) of meloxicam and acetaminophen. Firstly, chromatographic peaks of drugs and non-retained solute (uracil) on β-cyclodextrin column at different flow rates were acquired, and the retention time and variance values were obtained via the fitting the peaks. Then, the plate heights of drugs (H(R)) and uracil (H(M,C)) were calculated. The plate height of theoretical non-retained solute (H(M,T)) was calculated based on the differences of diffusion coefficient and the stagnant mobile phase mass transfer between drugs and uracil. Finally, the k(off,app) was calculated from the slope of the regression equation between (H(R)-H(M,T)) and uk/(1+k)2, (0.13 ± 0.00) s(-1) and (4.83 ± 0.10) s(-1) for meloxicam and acetaminophen (control drug), respectively. In addition, the apparent association rate constant (k(on,app)) was also calculated through the product of K (12.53 L x mol(-1)) and k(off,app). In summary, it has been proved that the method established in our study was simple, efficiently fast and reproducible for investigation on the kinetics of drug-cyclodextrin interactions.


Subject(s)
Acetaminophen , Chemistry , Chromatography, Affinity , Drug Interactions , Kinetics , Mass Spectrometry , Thermodynamics , Thiazines , Chemistry , Thiazoles , Chemistry , beta-Cyclodextrins , Chemistry
3.
Acta Pharmaceutica Sinica ; (12): 535-542, 2014.
Article in Chinese | WPRIM | ID: wpr-245049

ABSTRACT

The release behavior of single pellet was investigated by LC/MS/MS method with tamsulosin hydrochloride (TSH) as the model drug of the research and then the pellets were divided into four groups according to the drug loading. Comparison of dissolution profiles of each group and capsule were performed using f1 and f2 factor methods to study the difference and similarity. The release profiles of single pellet, each group and capsule were analyzed using principle component analysis (PCA). The particle system was built through Matlab to get the target release profile. The result of this research demonstrated the release behavior of single pellet correlated well with the drug loading. While the dissolution profile of capsule as a reference, the similarity factor of dissolution profiles of the lower drug loading groups were 62.2, 67.1, 53.9, respectively and, 43.3 for highest drug loading group. The particle systems with different pellet distribution and same release profiles were built through release behavior of single pellet. It is of significance to investigate the release behavior of single pellets for studying the release regularity of multiple-unit drug delivery system.


Subject(s)
Capsules , Chemistry, Pharmaceutical , Chromatography, Liquid , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Principal Component Analysis , Sulfonamides , Chemistry , Tandem Mass Spectrometry , Technology, Pharmaceutical
SELECTION OF CITATIONS
SEARCH DETAIL