Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 441-442, 2014.
Article in English | WPRIM | ID: wpr-689235

ABSTRACT

Introduction: Brenta’s silt-clay (BrentaKer®, EGAP, Italy) is a natural sediment containing minerals pertaining to Italian Dolomite Alps mountains, which is extracted from the catchment area of Brenta river. Particle-size distribution, mineralogical, chemical, tensiometric investigations with some observational findings open to new perspectives for its application in beauty & wellness field. On these basis, surface energy evaluations of tensiometric affinity with the skin by TVS modelling1) and in-vivo clinical studies of anti-cellulite properties of Brenta’s silt-clay were performed. Objectives: The aim of this work was to evaluate the properties of the Brenta’s silt-clay in anti-cellulite cosmetic treatments. These properties were hypothesized on the basis of its tensiometric affinity for the skin, as determined by the Bio-adhesive TVS index1). Materials and Methods: Surface energy studies were performed by contact angle method, using the DSA10-Kruss tensiometer (diiodomethane, FomblinHC/25®PFPE, glycerine as liquid tests). Bio-adhesive TVS index levels were originated from overlapping Brenta’s silt-clay and skin’s tensiometric prints. γ-rays irradiated Brenta’s silt-clay (Oroscare, EGAP, Italy) was inserted in a formulation composed by demineralised water, diazolidinyl urea, carboxymethyl cellulose, carbomer, glycerine, phenoxyethanol. Clinical efficacy of Brenta’s silt-clay was tested versus placebo in 10 females with cellulite on their thighs and/or gluteus (degree 1-3, Nurberger and Muller scale) for 8 weeks considering (a) skin hydration value (Corneometer CM825, C&K, Germany), (b) vertical deformation, elasticity, skin extensibility (Cutometer MPA580, C&K, Germany), (c) thigh circumference (measuring tape), (d) microcirculatory flow (Flowmeter Periflux PF4001, Perimed, UK, (e) length of dermo-hypodermic junction (Ultrasound Scanner Dermascan C®Ver.3, Cortex Technology, Germany), (f) skin smoothness (Skin replicas image analysis, Monaderm, France). Results: In three subjects the Bio-adhesive TVS index showed maximal affinity between Brenta’s silt-clay (DC=17.8±4 mN/m, PC=32.0±4.6 mN/m, SFE=49.8 mN/m) and untreated skin (DC=13.5±4.1, PC=19.67±13.4, SFE=33.2±16.2), indicating that the surface energy of Brenta’s silt-clay was higher than that of the skin and suggesting its capability to modify skin’s selective permeability. After 4 (T1) and 8 (T2) weeks, the subjects treated with Brenta’s silt-clay were compared with respect to placebo. Derma-hypodermal junction length significantly decreased (-10.7%, p<0.05) in T1, whereas an increase of skin microcirculatory flow (+26.0%, p<0.05) and a decrease of the derma-hypodermal junction length (-16.8%, p=0.052) and of skin maximum average roughness (-4.2%, p=0.057) were observed in T2. Conclusions: In subjects with cellulite blemish, the application of Brenta’s silt-clay is capable to increase skin blood micro-flow, improve dermo-hypodermal junction length and decrease skin maximum average roughness, suggesting its efficacy in anti-cellulite treatments. Bio-adhesive TVS index analysis suggests that this efficacy is probably related to its capability to modify skin’s selective permeability.

2.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 441-442, 2014.
Article in English | WPRIM | ID: wpr-375500

ABSTRACT

<b>Introduction:</b> Brenta’s silt-clay (BrentaKer<sup>®</sup>, EGAP, Italy) is a natural sediment containing minerals pertaining to Italian Dolomite Alps mountains, which is extracted from the catchment area of Brenta river. Particle-size distribution, mineralogical, chemical, tensiometric investigations with some observational findings open to new perspectives for its application in beauty & wellness field. On these basis, surface energy evaluations of tensiometric affinity with the skin by TVS modelling<sup>1)</sup> and in-vivo clinical studies of anti-cellulite properties of Brenta’s silt-clay were performed.<BR><b>Objectives: </b>The aim of this work was to evaluate the properties of the Brenta’s silt-clay in anti-cellulite cosmetic treatments. These properties were hypothesized on the basis of its tensiometric affinity for the skin, as determined by the Bio-adhesive TVS index<sup>1)</sup>.<BR><b>Materials and Methods: </b>Surface energy studies were performed by contact angle method, using the DSA10-Kruss tensiometer (diiodomethane, FomblinHC/25<sup>®</sup>PFPE, glycerine as liquid tests). Bio-adhesive TVS index levels were originated from overlapping Brenta’s silt-clay and skin’s tensiometric prints. γ-rays irradiated Brenta’s silt-clay (Oroscare, EGAP, Italy) was inserted in a formulation composed by demineralised water, diazolidinyl urea, carboxymethyl cellulose, carbomer, glycerine, phenoxyethanol. Clinical efficacy of Brenta’s silt-clay was tested versus placebo in 10 females with cellulite on their thighs and/or gluteus (degree 1-3, Nurberger and Muller scale) for 8 weeks considering (a) skin hydration value (Corneometer CM825, C&K, Germany), (b) vertical deformation, elasticity, skin extensibility (Cutometer MPA580, C&K, Germany), (c) thigh circumference (measuring tape), (d) microcirculatory flow (Flowmeter Periflux PF4001, Perimed, UK, (e) length of dermo-hypodermic junction (Ultrasound Scanner Dermascan C<sup>®</sup>Ver.3, Cortex Technology, Germany), (f) skin smoothness (Skin replicas image analysis, Monaderm, France). <BR><b>Results:</b> In three subjects the Bio-adhesive TVS index showed maximal affinity between Brenta’s silt-clay (DC=17.8±4 mN/m, PC=32.0±4.6 mN/m, SFE=49.8 mN/m) and untreated skin (DC=13.5±4.1, PC=19.67±13.4, SFE=33.2±16.2), indicating that the surface energy of Brenta’s silt-clay was higher than that of the skin and suggesting its capability to modify skin’s selective permeability. After 4 (T1) and 8 (T2) weeks, the subjects treated with Brenta’s silt-clay were compared with respect to placebo. Derma-hypodermal junction length significantly decreased (-10.7%, p<0.05) in T1, whereas an increase of skin microcirculatory flow (+26.0%, p<0.05) and a decrease of the derma-hypodermal junction length (-16.8%, p=0.052) and of skin maximum average roughness (-4.2%, p=0.057) were observed in T2.<BR><b>Conclusions: </b>In subjects with cellulite blemish, the application of Brenta’s silt-clay is capable to increase skin blood micro-flow, improve dermo-hypodermal junction length and decrease skin maximum average roughness, suggesting its efficacy in anti-cellulite treatments. Bio-adhesive TVS index analysis suggests that this efficacy is probably related to its capability to modify skin’s selective permeability.

SELECTION OF CITATIONS
SEARCH DETAIL