Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 29(10): 622-632, 10/2014. tab, graf
Article in English | LILACS | ID: lil-725296

ABSTRACT

PURPOSE: To evaluate experimental cranial vault reconstructions, by combining bone morphogenetic protein type 2 (BMP-2) and different matrices. METHODS: Fourty-nine animals were initially included (seven per group). We designed an experimental, open, prospective and comparative study, divided in seven groups: 1 - BMP-2+calcium phosphate (BT); 2 - BMP-2+acellular dermal matrix (BM); 3 - BMP-2+calcium alginate (BA); 4 - TCP; 5 - MDM; 6 - ALG; 7 - Bone autograft (BAG). A bone failure was created in left parietal bone of adult male mice. At the same procedure reconstruction was performed. After five weeks, animals were sacrificed, and reconstruction area was removed to histological analysis. After exclusion due to death or infection, thirty-eight animals were evaluated (BT=5; BM=6; BA=6; TCP=7; MDM=3; ALG=6; BAG=5). RESULTS: A higher incidence of infection has occurred in MDM group (57%, P=0.037). In cortical fusion, groups BAG, TCP, and BMP-2+TCP (BT) obtained the best scores, comparing to the others (P=0.00846). In new bone formation, groups BT, BAG, and TCP have presented the best scores (P=0.00835). When neovascularization was considered, best groups were BMP-2+MDM (BM), BMP-2+ALG (BA), TCP, and MDM (P=0.001695). BAG group was the best in bone marrow formation, followed by groups BT and TCP (P=0.008317). CONCLUSIONS: Bone morphogenetic protein type 2 increased bone regeneration in experimental skull reconstruction, especially when combined to calcium phosphate. Such association was even comparable to bone autograft, the gold-standard treatment, in some histological criteria. .


Subject(s)
Animals , Male , Acellular Dermis , Alginates/therapeutic use , /therapeutic use , Bone Regeneration/drug effects , Calcium Phosphates/therapeutic use , Skull/surgery , Biocompatible Materials/therapeutic use , Bone Regeneration/physiology , Bone Substitutes/therapeutic use , Bone Transplantation/methods , Disease Models, Animal , Glucuronic Acid/therapeutic use , Hexuronic Acids/therapeutic use , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Reference Values , Reproducibility of Results , Skull/pathology , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL