Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Experimental Neurobiology ; : 110-118, 2023.
Article in English | WPRIM | ID: wpr-976771

ABSTRACT

Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder. Pain catastrophizing, characterized by magnification, rumination, and helplessness, increases perceived pain intensity and mental distress in CRPS patients. As functional connectivity patterns in CRPS remain largely unknown, we aimed to investigate functional connectivity alterations in CRPS patients and their association with pain catastrophizing using a whole-brain analysis approach. Twenty-one patients with CRPS and 49 healthy controls were included in the study for clinical assessment and resting-state functional magnetic resonance imaging. Between-group differences in whole-brain functional connectivity were examined through a Network-based Statistics analysis. Associations between altered functional connectivity and the extent of pain catastrophizing were also assessed in CRPS patients. Relative to healthy controls, CRPS patients showed higher levels of functional connectivity in the bilateral somatosensory subnetworks (components 1~2), but lower functional connectivity within the prefronto-posterior cingulate (component 3), prefrontal (component 4), prefronto-parietal (component 5), and thalamo-anterior cingulate (component 6) subnetworks (p<0.05, family-wise error corrected). Higher levels of functional connectivity in components 1~2 (β=0.45, p=0.04) and lower levels of functional connectivity in components 3~6 (β=-0.49, p=0.047) were significantly correlated with higher levels of pain catastrophizing in CRPS patients. Higher functional connectivity in the somatosensory subnetworks implicating exaggerated pain perception and lower functional connectivity in the prefronto-parieto-cingulo-thalamic subnetworks indicating impaired cognitive-affective pain processing may underlie pain catastrophizing in CRPS.

2.
Journal of the Korean Society of Biological Psychiatry ; : 23-35, 2021.
Article in Korean | WPRIM | ID: wpr-917526

ABSTRACT

Fear conditioning and extinction, which are adaptive processes to learn and avoid potential threats, have essential roles in the pathophysiology of anxiety disorders. Experimental fear conditioning and extinction have been used to identify the mechanism of fear and anxiety in humans. However, the brain-based mechanisms of fear conditioning and extinction are yet to be established. In the current review, we summarized the results of neuroimaging studies that examined the brain changes—functional activity and structures—regarding fear conditioning or extinction in healthy individuals. The functional activity of the amygdala, insula, anterior cingulate gyrus, ventromedial prefrontal cortex, and hippocampus changed dynamically with both fear conditioning and extinction. This review may provide an up-to-date summary that may broaden our understanding of pathophysiological mechanisms of anxiety disorder. In addition, the brain regions that are involved in the fear conditioning and extinction may be considered as potential treatment targets in the future studies.

3.
Journal of the Korean Society of Biological Therapies in Psychiatry ; (3): 101-115, 2020.
Article | WPRIM | ID: wpr-836405

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is widely recognized as an effective and noninvasive neuromodulation for treating depression, and has been applied in a wide range of clinical settings. However, previous studies often reported inconsistent antidepressant effects that may be due to differences in the rTMS protocols such as coil placement. The typical simulation site for rTMS depression protocol is the left dorsolateral prefrontal cortex (DLPFC). Targeting the exact site of the left DLPFC while considering individual brain structure has been challenging due to the non-invasive nature of rTMS. Several researchers have applied various targeting methods to overcome the abovementioned issue. Most of the previous studies have applied the “5-cm rule” or the “international 10-20 system,” which is easily applicable. Recently, researchers started to apply a neuronavigation system that targets the stimulation site based on neuroimaging of each individual. Pros and cons of targeting methods have been discussed in terms of validity and reliability of targeting stimulation sites, differences in treatment responses, as well as considerations of individual characteristics. Therefore, the current review focuses on the targeting methods of stimulation site and the treatment effects of depression in previous studies. For discussion, we divided neuronavigation methods into using fixed coordinates and using individualized targets. Furthermore, the limitations of each targeting method are discussed that may potentially contribute to the development of the optimal rTMS protocol for depression treatment.

SELECTION OF CITATIONS
SEARCH DETAIL