Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Radiology ; : 1187-1195, 2018.
Article in English | WPRIM | ID: wpr-718931

ABSTRACT

OBJECTIVE: To compare correlations between pulmonary function test (PFT) results and different reconstruction algorithms and to suggest the optimal reconstruction protocol for computed tomography (CT) quantification of low lung attenuation areas and airways in healthy individuals. MATERIALS AND METHODS: A total of 259 subjects with normal PFT and chest CT results were included. CT scans were reconstructed using filtered back projection, hybrid-iterative reconstruction, and model-based IR (MIR). For quantitative analysis, the emphysema index (EI) and wall area percentage (WA%) were determined. Subgroup analysis according to smoking history was also performed. RESULTS: The EIs of all the reconstruction algorithms correlated significantly with the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (all p < 0.001). The EI of MIR showed the strongest correlation with FEV1/FVC (r = −0.437). WA% showed a significant correlation with FEV1 in all the reconstruction algorithms (all p < 0.05) correlated significantly with FEV1/FVC for MIR only (p < 0.001). The WA% of MIR showed the strongest correlations with FEV1 (r = −0.205) and FEV1/FVC (r = −0.250). In subgroup analysis, the EI of MIR had the strongest correlation with PFT in both ever-smoker and never-smoker subgroups, although there was no significant difference in the EI between the reconstruction algorithms. WA% of MIR showed a significantly thinner airway thickness than the other algorithms (49.7 ± 7.6 in ever-smokers and 49.5 ± 7.5 in never-smokers, all p < 0.001), and also showed the strongest correlation with PFT in both ever-smoker and never-smoker subgroups. CONCLUSION: CT quantification of low lung attenuation areas and airways by means of MIR showed the strongest correlation with PFT results among the algorithms used, in normal subjects.


Subject(s)
Emphysema , Forced Expiratory Volume , Lung , Pulmonary Emphysema , Respiratory Function Tests , Smoke , Smoking , Tomography, X-Ray Computed , Vital Capacity
2.
Korean Journal of Radiology ; : 809-817, 2018.
Article in English | WPRIM | ID: wpr-716327

ABSTRACT

OBJECTIVE: To evaluate the accuracy of emphysema volume (EV) and airway measurements (AMs) produced by various iterative reconstruction (IR) algorithms and virtual monoenergetic images (VME) at both low- and standard-dose settings. MATERIALS AND METHODS: Computed tomography (CT) images were obtained on phantom at both low- (30 mAs at 120 kVp) and standard-doses (100 mAs at 120 kVp). Each CT scan was reconstructed using filtered back projection, hybrid IR (iDose4; Philips Healthcare), model-based IR (IMR-R1, IMR-ST1, IMR-SP1; Philips Healthcare), and VME at 70 keV (VME70). The EV of each air column and wall area percentage (WA%) of each airway tube were measured in all algorithms. Absolute percentage measurement errors of EV (APEvol) and AM (APEWA%) were then calculated. RESULTS: Emphysema volume was most accurately measured in IMR-R1 (APEvol in low-dose, 0.053 ± 0.002; APEvol in standard-dose, 0.047 ± 0.003; all p 0.05). VME70 showed a significantly higher APEvol than iDose4, IMR-R1, and IMR-ST1 (all p < 0.004). VME70 also showed a significantly higher APEWA% compared with the other algorithms (all p < 0.001). CONCLUSION: IMR was the most accurate technique for measurement of both EV and airway wall thickness. However, VME70 did not show a significantly better accuracy compared with other algorithms.


Subject(s)
Emphysema , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL