Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 48-53, 2021.
Article in Chinese | WPRIM | ID: wpr-905311

ABSTRACT

Neuroimaging technique is a kind of significant means to explore the mechanism of cerebral plasticity after stroke. Diffusion tensor imaging can be used to describe the structure of white matter fiber bundles and evaluate the degree of damage, but it cannot reflect the functional connections between different brain regions. Task-state functional magnetic resonance (fMRI) can detect the activation of corresponding brain regions caused by specific tasks, but the test design is complex and demanding for subjects. Resting-state fMRI can analyze complex brain networks and reflect functional connections in different brain regions, but the method of data analysis is complex. Functional near-infrared spectroscopy (fNIRS) is another non-invasive method to reflect the functional activation of brain regions, in which temporal resolution is better than fMRI, but the spatial resolution is slightly lower. The combination of multiple detection methods may be an important research direction in the future.

2.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 1066-1071, 2021.
Article in Chinese | WPRIM | ID: wpr-905176

ABSTRACT

Objective:To apply functional near-infrared spectroscopy (fNIRS) to analyze brain activity pattern of bilateral sensorimotor cortex (SMC) and premotor cortex (PMC) during complex dominant and non-dominant hand movement in healthy subjects. Methods:From August to December, 2019, 15 right-handed healthy residents were recruited. The block designed grip-release task was used in the subjects, and detected oxyhemoglobin and deoxyhemoglobin concentration with fNIRS to analyze the activation of bilateral SMC, PMC and prefontal cortex in term of activation channels and intensity. Results:For the oxyhemoglobin concentration, the number of activated channels was the same in both hemispheres during right (dominant) hand movement, and the activation of left SMC was stronger (P < 0.05); however, more channels were activated in the right hemisphere during left (non-dominant) hand movement, and the activation of right SMC was stronger (P < 0.05). For the deoxyhemoglobin concentration, more channels were activated in the contralateral hemisphere during either dominant or non-dominant hand movement, and the activation of left SMC, Channel 12 (left PMC) and Channel 26 (right PMC) were stronger during right (dominant) hand movement (P < 0.05). Conclusion:It is feasible to use fNIRS to study the activation of hand movement related brain regions during complex movement of dominant and non-dominant hand, especially with the results of oxyhemoglobin concentration.

SELECTION OF CITATIONS
SEARCH DETAIL