Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-178792

ABSTRACT

Background & objectives: Yttrium-90 (90Y)-based radioembolization has been employed to treat hepatocellular carcinoma (HCC) as commercial radioactive glass and polymeric resin microspheres. However, in India and other Asian countries, these preparations must be imported and are expensive, validating the need for development of indigenous alternatives. This work was aimed to develop an economically and logistically favourable indigenous alternative to imported radioembolizing agents for HCC therapy. Methods: The preparation of 90Y-labelled Biorex 70 microspheres was optimized and in vitro stability was assessed. Hepatic tumour model was generated in Sprague-Dawley rats by orthotopic implantation of N1S1 rat HCC cell line. In vivo localization and retention of the 90Y-labelled Biorex 70 microspheres was assessed for seven days, and impact on N1S1 tumour growth was studied by histological examination and biochemical assays. Results: Under optimal conditions, >95% 90Y-labelling yield of Biorex70 resin microspheres was obtained, and these showed excellent in vitro stability of labelling (>95%) at seven days. In animal studies, 90Y-labelled Biorex 70 microspheres were retained (87.72±1.56% retained in liver at 7 days). Rats administered with 90Y-labelled Biorex 70 microspheres exhibited lower tumour to liver weight ratio, reduced serum alpha-foetoprotein level and greater damage to tumour tissue as compared to controls. Interpretation & conclusions: 90Y-labelled Biorex 70 microspheres showed stable retention in the liver and therapeutic effect on tumour tissue, indicating the potential for further study towards clinical use.

2.
Article in English | IMSEAR | ID: sea-155204

ABSTRACT

Background & objectives: In recent years, brachytherapy involving permanent radioactive seed implantation has emerged as an effective modality for the management of cancer of prostate. 125I-Ocu-Prosta seeds were indigenously developed and studies were carried out to assess the safety of the indigenously developed 125I-Ocu-Prosta seeds for treatment of prostate cancer. Methods: Animal experiments were  performed to assess the likelihood of in vivo release of 125I from radioactive seeds and migration of seeds implanted in the prostate gland of the rabbit. In vivo release of 125I activity was monitored by serial blood sampling from the auricular vein and subsequent measurement of 125I activity. Serial computed tomography  (CT) scans were done at regular intervals till 6 months post implant to assess the physical migration of the seeds. Results: The laser welded seeds maintained their hermeticity and prevented the in vivo release of 125I activity into the blood as no radioactivity was detected during follow up blood measurements. Our study showed that the miniature 125I seeds were clearly resolved in CT images. Seeds remained within the prostate gland during the entire study period. Moreover, the seed displacement was minimal even within the prostate gland. Interpretation & conclusions: Our findings have demonstrated that indigenously developed 125I-Ocu-Prosta seeds may be suitable for application in treatment of prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL