Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 4150-4167, 2023.
Article in Chinese | WPRIM | ID: wpr-1008018

ABSTRACT

The neurotrophin-tyrosine receptor kinase B (TrkB) signaling pathway plays an important role in regulating the balance of excitation and inhibition in the primary visual cortex (V1). Previous studies have revealed its mechanism of regulating the level of cortical excitability by increasing the efficiency of excitatory transmission, but it has not been elucidated how TrkB receptors regulate the balance of excitation and inhibition through the inhibitory system, which in turn affects visual cortex function. Therefore, the objective of this study was to investigate how the TrkB signaling pathway specifically regulates the most important inhibitory neuron-PV neurons affects the visual cortex function of mice. The expression of TrkB receptor on PV neurons in the V1 region was specifically reduced by the virus, the functional changes of inhibitory and excitatory neurons in the primary visual cortex were recorded by multi-channel electrophysiological in vivo. The orientation discrimination ability of mice was tested by behavioral experiments, and altered orientation discrimination ability of mice was tested by behavioral experiments. The results showed that reduced expression of TrkB receptors on PV inhibitory neurons in primary visual cortex significantly increased the response intensity of excitatory neurons, reduced the orientation discrimination ability of inhibitory and excitatory neurons, and increased the signal-to-noise ratio, but the orientation discrimination ability at the individual level in mice showed a decrease. These results suggest that the TrkB signaling pathway does not modulate the function of PV neurons solely by increasing excitatory transmission targeting PV neurons, and its effect on neuronal signal-to-noise ratio is not due to enhancement of the inhibitory system.


Subject(s)
Mice , Animals , Receptor, trkB/metabolism , Neurons/metabolism , Signal Transduction
2.
Chinese Journal of Biotechnology ; (12): 4201-4214, 2021.
Article in Chinese | WPRIM | ID: wpr-921499

ABSTRACT

Protein kinase CK2 is a common, evolutionarily conserved and ubiquitous protein kinase. In recent years, increasing evidences have shown that CK2 has a variety of phosphorylated protein substrates, which play important roles in growth, development and various diseases. Therefore, CK2 may participate in these physiological processes by regulating the phosphorylation of these substrates. This article briefly reviewed the structural characteristics of protein kinase CK2 and its physiological functions in growth, development, immunity, formation of tumor and other diseases, in order to provide knowledge basis for further research on the regulatory mechanism of CK2 and potential applications of its inhibitors.


Subject(s)
Casein Kinase II/metabolism , Phosphorylation , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL