Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1032-1039, 2011.
Article in Chinese | WPRIM | ID: wpr-324506

ABSTRACT

Ethanol fermentation from Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae strains expressing the inulinase gene (inu) from Kluyveromyces marxianus was investigated. The inu native and pgk promoters were used to drive the expression of the inu gene, and the inulinase was expressed as an extracellular enzyme. All positive clones (confirmed by PCR) were able to express inulinase as measured by enzyme activity in the culture supernatant, among which two clones HI6/6 and HPI6/3 were selected, and their inulinase activity and ethanol fermentation performance were compared with their wild type. The inulinase activities of 86 and 23.8 U/mL were achieved, which were 4.6-fold and 1.5-fold higher than that of the wild type. Furthermore, ethanol fermentation was carried out with the recombinants and medium containing 200 g/L raw Jerusalem artichoke meal, and ethanol concentrations of 55 g/L and 52 g/L were obtained, with ethanol yields of 0.495 and 0.453, respectively, equivalent to 96.9% and 88.6% of the theoretical value.


Subject(s)
Ethanol , Metabolism , Fermentation , Glycoside Hydrolases , Genetics , Bodily Secretions , Helianthus , Metabolism , Kluyveromyces , Genetics , Metabolic Engineering , Methods , Plant Tubers , Metabolism , Recombination, Genetic , Saccharomyces cerevisiae , Genetics
2.
Chinese Journal of Biotechnology ; (12): 1448-1456, 2011.
Article in Chinese | WPRIM | ID: wpr-304558

ABSTRACT

A mixture of fructose and glucose was developed to simulate the hydrolysate of Jerusalem artichoke tubers, the fructose-based feedstock suitable for butanol production. With the initial pH of 5.5 without regulation during mixed-sugar fermentation, as high as 23.26 g/L sugars were remained unconverted, and butanol production of 5.51 g/L were obtained. Compared with either glucose or fructose fermentation, the early termination of mixed-sugar fermentation might be caused by toxic organic acids and the low pH. When the pH of the fermentation system was controlled at higher levels, it was found that sugars utilization was facilitated, but less butanol was produced due to the over-accumulation of organic acids. On the other hand, when the pH was controlled at lower levels, more sugars were remained unconverted, although butanol production was improved. Based on these experimental results, a stage-wise pH regulation strategy, e.g., controlling the pH of the fermentation system at 5.5 untill the OD620 reached 1.0, and then the pH control was removed, was developed, which significantly improved the fermentation performance of the system, with only 2.05 g/L sugars unconverted and 10.48 g/L butanol produced.


Subject(s)
Acetone , Metabolism , Butanols , Metabolism , Fermentation , Fructose , Metabolism , Glucose , Metabolism , Helianthus , Metabolism , Hydrogen-Ion Concentration
3.
Chinese Journal of Biotechnology ; (12): 991-996, 2010.
Article in Chinese | WPRIM | ID: wpr-292181

ABSTRACT

Butanol production from acid hydrolysate of Jerusalem artichoke juice by Clostridium acetobutylicum L7 was investigated, and it was found that natural components of the hydrolysate were suitable for solvent production with the species. With batch fermentation using the medium containing 48.36 g/L total sugars, 8.67 g/L butanol was produced at 60 h, and the ratio of butanol to acetone to ethanol was 0.58:0.36:0.06, which were similar to the fermentation with fructose as carbon source, but both of these two fermentations were slower than that with glucose as carbon source, indicating the fructose transport of the species might not be effective as that for glucose. When the total sugars of the medium were increased to 62.87 g/L, the residual sugars increased slightly from 3.09 g/L to 3.26 g/L, but butanol production of the fermentation system was improved significantly, with 11.21 g/L butanol produced and the ratio of butanol to acetone to ethanol at 0.64:0.29:0.05, which illustrated that an excess in sugars enhanced the butanol biosynthesis of the species by compromising its acetone production. When the sugar concentration of the medium was further increased, much more sugars were remained unconsumed, making the process economically unfavourable.


Subject(s)
Butanols , Metabolism , Clostridium acetobutylicum , Metabolism , Fermentation , Helianthus , Chemistry , Industrial Microbiology , Methods
SELECTION OF CITATIONS
SEARCH DETAIL