Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 585-593, 2019.
Article in English | WPRIM | ID: wpr-786676

ABSTRACT

BACKGROUND: Low temperature plasma (LTP) was recently shown to be potentially useful for biomedical applications such as bleeding cessation, cancer treatment, and wound healing, among others. Keratinocytes are a major cell type that migrates directionally into the wound bed, and their proliferation leads to complete wound closure during the cutaneous repair/regeneration process. However, the beneficial effects of LTP on human keratinocytes have not been well studied. Therefore, we investigated migration, growth factor production, and cytokine secretion in primary human keratinocytes after LTP treatment.METHODS: Primary cultured keratinocytes were obtained from human skin biopsies. Cell viability was measured with the EZ-Cytox cell viability assay, cell migration was evaluated by an in vitro wound healing assay, gene expression was analyzed by quantitative real-time polymerase chain reaction, and protein expression was measured by enzyme-linked immunosorbent assays and western blotting after LTP treatment.RESULTS: Cell migration, the secretion of several cytokines, and gene and protein levels of angiogenic growth factors increased in LTP-treated human keratinocytes without associated cell toxicity. LTP treatment also significantly induced the expression of hypoxia inducible factor-1α (HIF-1α), an upstream regulator of angiogenesis. Further, the inhibition of HIF-1α expression blocked the production of angiogenic growth factors induced by LTP in human keratinocytes.CONCLUSION: Our results suggest that LTP treatment is an effective approach to modulate wound healing-related molecules in epidermal keratinocytes and might promote angiogenesis, leading to improved wound healing.


Subject(s)
Humans , Hypoxia , Biopsy , Blotting, Western , Cell Migration Assays , Cell Movement , Cell Survival , Cytokines , Enzyme-Linked Immunosorbent Assay , Gene Expression , Hemorrhage , In Vitro Techniques , Intercellular Signaling Peptides and Proteins , Keratinocytes , Plasma , Real-Time Polymerase Chain Reaction , Skin , Wound Healing , Wounds and Injuries
2.
Tissue Engineering and Regenerative Medicine ; (6): 103-105, 2019.
Article in English | WPRIM | ID: wpr-742380

ABSTRACT

Unfortunately, the online published article has error in Figure 3.

3.
Tissue Engineering and Regenerative Medicine ; (6): 771-779, 2018.
Article in English | WPRIM | ID: wpr-718788

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent stem cells that can differentiate into several cell types. In addition, many studies have shown that MSCs modulate the immune response. However, little information is currently available regarding the maintenance of immunomodulatory characteristics of MSCs through passages. Therefore, we investigated and compared cytokine and gene expression levels from adipose (AD) and bone marrow (BM)-derived MSCs relevant to immune modulation from early to late passages. METHODS: MSC immunophenotype, growth characteristics, cytokine expressions, and gene expressions were analyzed. RESULTS: AD-MSCs and BM-MSCs had similar cell morphologies and surface marker expressions from passage 4 to passage 10. Cytokines secreted by AD-MSCs and BM-MSCs were similar from early to late passages. AD-MSCs and BM-MSCs showed similar immunomodulatory properties in terms of cytokine secretion levels. However, the gene expressions of tumor necrosis factor-stimulated gene (TSG)-6 and human leukocyte antigen (HLA)-G were decreased and gene expressions of galectin-1 and -3 were increased in both AD- and BM-MSCs with repeated passages. CONCLUSION: Our study showed that the immunophenotype and expression of immunomodulation-related cytokines of AD-MSCs and BM-MSCs immunomodulation through the passages were not significantly different, even though the gene expressions of both MSCs were different.


Subject(s)
Humans , Bone Marrow , Cytokines , Galectin 1 , Gene Expression , Immunomodulation , Leukocytes , Mesenchymal Stem Cells , Multipotent Stem Cells , Necrosis
4.
Experimental Neurobiology ; : 278-286, 2017.
Article in English | WPRIM | ID: wpr-18845

ABSTRACT

Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.


Subject(s)
Animals , Rats , Agmatine , Arginine , Contusions , Immunohistochemistry , Interleukin-10 , Macrophages , N-Methylaspartate , Neuralgia , Neuroprotection , Neuroprotective Agents , Nitric Oxide Synthase , Phenotype , RNA, Messenger , Spinal Cord Injuries , Spinal Cord
5.
Anatomy & Cell Biology ; : 230-240, 2010.
Article in English | WPRIM | ID: wpr-49861

ABSTRACT

Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.


Subject(s)
Animals , Rats , Agmatine , Arginine , Basement Membrane , Brain , Brain Ischemia , Capillary Permeability , Carboxy-Lyases , Cell Death , Cerebral Cortex , Endothelial Cells , Extracellular Matrix , Glycosaminoglycans , Hippocampus , Ischemia , Matrix Metalloproteinases , Microvessels , Models, Animal , Neurons , Nitric Oxide , Nitric Oxide Synthase Type III , Reperfusion
6.
Korean Journal of Anatomy ; : 149-160, 2009.
Article in English | WPRIM | ID: wpr-647049

ABSTRACT

In ischemic strokes, apoptosis is caused by excitotoxicity, ionic imbalance, oxidative/nitrosative stress, and apoptotic-like pathways. Nitric oxide (NO), a free radical, is elevated after ischemic insult. NO, which is generated primarily by neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS), promotes neuronal damage following ischemia. Evidence obtained in recent years has demonstrated that endoplasmic reticulum (ER)-mediated cell death plays an important role in cerebral ischemia. Agmatine is an endogenous substance synthesized from L-arginine by arginine decarboxylase (ADC) and is present in mammalian brain. We had previously reported that agmatine contributes to neuroprotection against ischemic injury. In continuation of our earlier work, we intended to investigate whether agmatine protects brain from transient global ischemia, and also tried to determine the neuroprotective mechanism of agmatine. Twenty minutes of transient global ischemia was induced by 4 vessel occlusion (4-VO). Agmatine (100 mg/kg, IP) was administered simultaneously with reperfusion. Samplings of brain were done at 6, 24, 48, and 72 h after reperfusion to determine the effect of agmatine on ischemic injured hippocampus. ER-damage was also investigated using electron microscope. Results showed that agmatine treatment prevented delayed neuronal cell death in hippocampal CA1 neurons after global cerebral ischemia. It also blocked NOS expression in the rat brain. Agmatine induced the increased expression of glucose-regulated protein 78 (Grp78). These results suggest that agmatine inhibits the production of NO by decreasing the expression of nNOS and iNOS on global forebrain ischemia and the neuroprotective effect of agmatine were concerned with the ER stress-mediated condition.


Subject(s)
Animals , Rats , Agmatine , Apoptosis , Arginine , Brain , Brain Ischemia , Carboxy-Lyases , Cell Death , Electrons , Endoplasmic Reticulum , Glycosaminoglycans , Hippocampus , Ischemia , Neurons , Neuroprotective Agents , Nitric Oxide , Nitric Oxide Synthase , Nitric Oxide Synthase Type I , Nitric Oxide Synthase Type II , Prosencephalon , Reperfusion , Stroke
SELECTION OF CITATIONS
SEARCH DETAIL