Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 2694-2699, 2023.
Article in Chinese | WPRIM | ID: wpr-999017

ABSTRACT

Polysaccharide of Balanophora involucrata Hook. f. (BPS), the major component of Balanophora involucrata Hook. f., was confirmed the protective effect on liver injury in our previous study. This research aimed to investigate the protective mechanism of BPS on experimental liver injury by attenuating cell ferroptosis through modulating solute carrier family 7 member 11/glutathione peroxidase 4 (SLC7A11/GPX4) pathway. The animal experiment was approved by the Experimental Animal Ethical Committee of Hubei Minzu University and all rats had received human care in compliance with the institutional animal care guidelines. Rats were given intraperitoneal injection of (D-galactosamine, D-GalN) solution (800 mg·kg-1) one time to establish the acute liver injury model. The results showed aspartate amino transferase (AST), alanine aminotransferase (ALT) and 4-hydroxynonenal (4-HNE) levels in serum were decreased, and the contents of reactive oxygen species (ROS), Fe2+, malondialdehyde (MDA) and lipid peroxide (LPO) in liver tissues also decreased and glutathione (GSH) level increased after BPS administration with 200 mg·kg-1. Besides, BPS reduced iron deposition and increased the expression of SLC7A11 and GPX4 proteins in liver tissue. In conclusion, BPS ameliorated experimental liver injury by alleviating cell ferroptosis through SLC7A11/GPX4 pathway. The present study pointed to the possibility of utilizing BPS for protection against liver injury in clinic.

SELECTION OF CITATIONS
SEARCH DETAIL