Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Pediatrics ; (12): 889-895, 2023.
Article in Chinese | WPRIM | ID: wpr-1013193

ABSTRACT

Objective: To analyze the clinical and molecular diagnostic status of Fanconi anemia (FA) in China. Methods: The General situation, clinical manifestations and chromosome breakage test and genetic test results of 107 pediatric FA cases registered in the Chinese Blood and Marrow Transplantation Registry Group (CBMTRG) and the Chinese Children Blood and Marrow Transplantation Registry Group (CCBMTRG) from August 2009 to January 2022 were analyzed retrospectively. Children with FANCA gene variants were divided into mild and severe groups based on the type of variant, and Wilcoxon-test was used to compare the phenotypic differences between groups. Results: Of the 176 registered FA patients, 69 (39.2%) cases were excluded due to lack of definitive genetic diagnosis results, and the remaining 107 children from 15 hospitals were included in the study, including 70 males and 37 females. The age at transplantation treatment were 6 (4, 9) years. The enrolled children were involved in 10 pathogenic genes, including 89 cases of FANCA gene, 7 cases of FANCG gene, 3 cases of FANCB gene, 2 cases of FANCE gene and 1 case each of FANCC, FANCD1, FANCD2, FANCF, FANCJ, and FANCN gene. Compound heterozygous or homozygous of loss-of-function variants account for 69.2% (72/104). Loss-of-function variants account for 79.2% (141/178) in FANCA gene variants, and 20.8% (37/178) were large exon deletions. Fifty-five children (51.4%) had chromosome breakage test records, with a positive rate of 81.8% (45/55). There were 172 congenital malformations in 80 children.Café-au-Lait spots (16.3%, 28/172), thumb deformities (16.3%,28/172), polydactyly (13.9%, 24/172), and short stature (12.2%, 21/172) were the most common congenital malformations in Chinese children with FA. No significant difference was found in the number of congenital malformations between children with severe (50 cases) and mild FANCA variants (26 cases) (Z=-1.33, P=0.185). Conclusions: FANCA gene is the main pathogenic gene in children with FA, where the detection of its exon deletion should be strengthened clinically. There were no phenotypic differences among children with different types of FANCA variants. Chromosome break test is helpful to determine the pathogenicity of variants, but its accuracy needs to be improved.


Subject(s)
Male , Female , Humans , Child , Fanconi Anemia/genetics , Chromosome Breakage , Retrospective Studies , Exons , China/epidemiology
2.
Journal of Southern Medical University ; (12): 175-182, 2023.
Article in Chinese | WPRIM | ID: wpr-971512

ABSTRACT

OBJECTIVE@#To establish an efficient protocol for directed differentiation of human induced pluripotent stem cells (hiPSCs) into functional midbrain dopaminergic progenitor cells (DAPs) in vitro.@*METHODS@#hiPSCs were induced to differentiate into DAPs in two developmental stages. In the first stage (the first 13 days), hiPSCs were induced into intermediate cells morphologically similar to primitive neuroepithelial cells (NECs) in neural induction medium containing a combination of small molecule compounds. In the second stage, the intermediate cells were further induced in neural differentiation medium until day 28 to obtain DAPs. After CM-DiI staining, the induced DAPs were stereotactically transplanted into the right medial forebrain bundle (MFB) of rat models of Parkinson's disease (PD). Eight weeks after transplantation, the motor behaviors of PD rats was evaluated. Immunofluorescence assay of brain sections of the rats was performed at 2 weeks after transplantation to observe the survival, migration and differentiation of the transplanted cells in the host brain microenvironment.@*RESULTS@#hiPSCs passaged stably on Matrigel showed a normal diploid karyotype, expressed the pluripotency markers OCT4, SOX2, and Nanog, and were positive for alkaline phosphatase. The primitive neuroepithelial cells obtained on day 13 formed dense cell colonies in the form of neural rosettes and expressed the neuroepithelial markers (SOX2, Nestin, and PAX6, 91.3%-92.8%). The DAPs on day 28 highly expressed the specific markers (TH, FOXA2, LMX1A and NURR1, 93.3-96.7%). In rat models of PD, the hiPSCs-DAPs survived and differentiated into TH+, FOXA2+ and Tuj1+ neurons at 2 weeks after transplantation. Eight weeks after transplantation, the motor function of PD rats was significantly improved as shown by water maze test (P < 0.0001) and apomorphine-induced rotation test (P < 0.0001) compared with rats receiving vehicle injection.@*CONCLUSION@#HiPSCs can be effectively induced to differentiate into DAPs capable of differentiating into functional neurons both in vivo and in vitro. In rat models of PD, the transplanted hiPSCs-DAPs can survive for more than 8 weeks in the MFB and differentiate into multiple functional neurocytes to ameliorate neurological deficits of the rats, suggesting the potential value of hiPSCs-DAPs transplantation for treatment of neurological diseases.


Subject(s)
Humans , Rats , Animals , Induced Pluripotent Stem Cells , Cell Differentiation/physiology , Neurons , Parkinson Disease , Mesencephalon , Cells, Cultured
3.
Chinese Journal of Pediatrics ; (12): 323-328, 2022.
Article in Chinese | WPRIM | ID: wpr-935695

ABSTRACT

Objective: To investigate the characteristics, risk factors and outcomes of thalassemia major (TM) children with pericardial effusion (PE) after allo-geneic hematopoietic stem cell transplantation (allo-HSCT). Methods: Clinical data of 446 TM children received allo-HSCT at Shenzhen Children's Hospital between January 2012 and December 2020 were analyzed retrospectively. Patients were divided into PE and non-PE group according to the occurrence of PE. Chi-square tests were used to investigate the risk factors that were associated with the development of PE. Kaplan-Meier method was used for survival analysis of the 2 groups. Results: Twenty-five out of 446 patients (5.6%) developed PE at a time of 75.0 (66.5, 112.5) days after allo-HSCT. Among these patients, 22 cases (88.0%) had PE within 6 months after allo-HSCT and 19 patients (76.0%) had PE within 100 days after allo-HSCT. The diagnoses of PE were confirmed using echocardiography. Pericardial tamponade was observed in only 1 patient, who later undergone emergency pericardiocentesis. The rest of patients received conservative managements alone. PE disappeared in all patients after treatment. Risk factors that were associated with the development of PE after allo-HSCT included the gender of patients, the type of transplantation, the number of mononuclear cells (MNC) infuse, pulmonary infection after HSCT and transplantation associated thrombotic microangiopathy (TA-TMA) (χ²=3.99, 10.20, 14.18, 36.24, 15.03, all P<0.05). In 239 patients that received haploidentical HSCT, the development of PE was associated with the gender of patients, pulmonary infection after HSCT and TA-TMA (χ²=4.48, 20.89, 12.70, all P<0.05). The overall survival rates of PE and non-PE groups were 96.0% (24/25) and 98.6% (415/421). The development of PE was not associated with the overall survival of TM children after allo-HSCT (χ²=1.73, P=0.188). Conclusions: PE mainly develop within 100 days after allo-HSCT in pediatric TM recipients. Haploidentical grafts, female gender, pulmonary infection after HSCT and TA-TMA are the main risk factors associated with PE development after transplant. However, the presence of PE don't have a significant impact on the outcomes of pediatric TM patients after allo-HSCT.


Subject(s)
Child , Female , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Pericardial Effusion/etiology , Retrospective Studies , Risk Factors , Thrombotic Microangiopathies/complications , beta-Thalassemia/therapy
4.
Chinese Journal of Pathology ; (12): 360-363, 2003.
Article in Chinese | WPRIM | ID: wpr-242173

ABSTRACT

<p><b>OBJECTIVE</b>To observe in vitro changes of endothelial cells after confrontation with tumor cells.</p><p><b>METHODS</b>Dynobeads were used to isolate the endothelial cells from the rat lung. Mouse dendritic cell sarcoma cells (DCS), human gastric carcinoma cells (BGC-823) and mouse lung adenocarcinoma cells (LA795) were added to the endothelial cells when the latter was at the confluence phase. Phase contrast microscope, scanning electro-microscope, immunohistochemistry, transwell and fluorescence dye transfer were used to detect morphological and functional changes of the endothelial cells.</p><p><b>RESULTS</b>Endothelial cells may look like cobble stones or long spindle shaped. Direct contact of tumor cells with endothelial cells induced round vascular-like space formation between confluent endothelial cells. Tumor cells were often found at the newly appeared spaces. Tumor cell conditioned medium could support the growth and promote the locomotion of endothelial cells through transwell. It was observed that luciffer yellow was directly transported from tumor cells to endothelial cells.</p><p><b>CONCLUSIONS</b>Tumor cells can directly induce morphological and functional changes in endothelial cells. Direct intercellular communication between tumor cells and endothelial cells is present.</p>


Subject(s)
Animals , Rats , Cell Communication , Cell Line, Tumor , Cell Movement , Endothelial Cells , Cell Biology , Neoplasms , Pathology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL