Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Asian Journal of Andrology ; (6): 137-142, 2023.
Article in English | WPRIM | ID: wpr-970990

ABSTRACT

Selective dorsal neurotomy (SDN) is a surgical treatment for primary premature ejaculation (PE), but there is still no standard surgical procedure for selecting the branches of the dorsal penile nerves to be removed. We performed this study to explore the value of intraoperative neurophysiological monitoring (IONM) of the penile sensory-evoked potential (PSEP) for standard surgical procedures in SDN. One hundred and twenty primary PE patients undergoing SDN were selected as the PE group and 120 non-PE patients were selected as the normal group. The PSEP was monitored and compared between the two groups under both natural and general anesthesia (GA) states. In addition, patients in the PE group were randomly divided into the IONM group and the non-IONM group. During SDN surgery, PSEP parameters of the IONM group were recorded and analyzed. The differences in PE-related outcome measurements between the perioperative period and 3 months' postoperation were compared for the PE patients, and the differences in effectiveness and complications between the IONM group and the non-IONM group were compared. The results showed that the average latency of the PSEP in the PE group was shorter than that in the normal group under both natural and GA states (P < 0.001). Three months after surgery, the significant effective rates in the IONM and non-IONM groups were 63.6% and 34.0%, respectively (P < 0.01), and the difference in complications between the two groups was significant (P < 0.05). IONM might be useful in improving the short-term therapeutic effectiveness and reducing the complications of SDN.


Subject(s)
Male , Humans , Premature Ejaculation/surgery , Intraoperative Neurophysiological Monitoring/methods , Prospective Studies , Neurosurgical Procedures/methods , Penis/surgery , Retrospective Studies
2.
Asian Journal of Andrology ; (6): 699-703, 2023.
Article in English | WPRIM | ID: wpr-1009818

ABSTRACT

Recent research has highlighted structural and functional abnormalities in the cerebral cortex of patients with premature ejaculation (PE). These anomalies could play a pivotal role in the physiological mechanisms underlying PE. This study leveraged functional magnetic resonance imaging (fMRI), a noninvasive technique, to explore these neural mechanisms. We conducted resting-state fMRI scans on 36 PE patients and 22 healthy controls (HC), and collected data on Premature Ejaculation Diagnostic Tool (PEDT) scores and intravaginal ejaculation latency time (IELT). Employing a surface-based regional homogeneity (ReHo) approach, we analyzed local neural synchronous spontaneous activity, diverging from previous studies that utilized a volume-based ReHo method. Areas with significant ReHo differences between PE and HC groups underwent surface-based functional connectivity (FC) analysis. Significant discrepancies in ReHo and FC across the cortical surface were observed in the PE cohort. Notably, PE patients exhibited decreased ReHo in the left triangular inferior frontal gyrus and enhanced ReHo in the right middle frontal gyrus. The latter showed heightened connectivity with the left lingual gyrus and the right orbital superior frontal gyrus. Furthermore, a correlation between ReHo and FC values with PEDT scores and IELT was found in the PE group. Our findings, derived from surface-based fMRI data, underscore specific brain regions linked to the neurobiological underpinnings of PE.


Subject(s)
Male , Humans , Premature Ejaculation , Brain Mapping/methods , Brain , Cerebral Cortex , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL