Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 3131-3135, 2014.
Article in Chinese | WPRIM | ID: wpr-327829

ABSTRACT

<p><b>OBJECTIVE</b>To discuss the changes in Wnt pathway inhibiting factors in esophageal precancerosis lesions induced by methyl benzyl nitrosamine (MBNA) and the effect of Gexia Zhuyu decoction.</p><p><b>METHOD</b>Wistar rats were subcutaneously injected with MBNA (3.5 mg x kg(-1) for twice per week to establish the model. Since the 1st day after the model establishment, they were orally administered with Gexia Zhuyu decoction (16, 8 mg x kg(-1)). At the 10th week, esophageal tissues were collected to observe the pathological changes of esophageal mucosa, detect SFRP1, sFRP4, Axin1, Axin2 and GSK-3β mRNA levels.by fluorescent quantitation PCR analysis and β-catenin protein level by Western blotting.</p><p><b>RESULT</b>Being induced by MBNA, rats in the model group showed slight atypical hyperplasia in the histopathological examination. Compared with the normal group, Gexia Zhuyu decoction dose high and low groups showed no significant pathomorphological and histological changes. The model group showed lower gene transcription levels of esophageal tissues sFRP1, sFRP4, Axin1 and Axin2 (P < 0.05 or P < 0.01) and higher β-catenin protein expression level (P < 0.01) than the normal control group. The Gexia Zhuyu decoction low dose group showed higher gene transcription levels of esophageal tissues sFRP1, sFRP4, Axin1 and Axin2 (P < 0.05 or P < 0.01) and lower β-catenin protein expression level (P < 0.01) than the normal control group.</p><p><b>CONCLUSION</b>Up-regulated β-catenin protein level and down-regulated Wnt pathway could enhance Wnt pathway activity of MBNA-induced esophageal precancerous lesions. Gexia Zhuyu decoction could down-regulate the β-catenin protein level and up-regulate the transcription level of Wnt pathway inhibiting factors, but could not block MBNA-induced esophageal precancerosis lesions.</p>


Subject(s)
Animals , Humans , Male , Rats , Axin Protein , Genetics , Metabolism , Drugs, Chinese Herbal , Esophageal Diseases , Drug Therapy , Genetics , Metabolism , Pathology , Glycogen Synthase Kinase 3 , Genetics , Metabolism , Glycogen Synthase Kinase 3 beta , Necrosis , Nitrosamines , Proteins , Genetics , Metabolism , Rats, Wistar , Wnt Proteins , Genetics , Metabolism , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL