Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 804-832, 2005.
Article in Chinese | WPRIM | ID: wpr-238336

ABSTRACT

Bone cells live in an environment heavily influenced by mechanical force. The development of bone tissue is dependent on the environment that surrounds it, both in vivo and in vitro. A loading stimulator on research of bone tissue-engineering was developed based on the mechanism of mechanosensation, scaffolding composites with mechanical strains with more physiologic magnitude, frequency components, and waveform. It also achieves the mechanical environment particularly in hard scaffold enough strong like cancellous bone. The device was tested using a reference scaffold made of better elastic plastic material. The experiment results showed that the device could be used in precision strain controls. Since the drive of the stimulator comes from the usage of smart material, piezoceramics, the strain at physiological level is controlled precisely. The stimulator provides a mechanical condition under which the effects of loading applied on bone tissue-engineering culture are conveniently investigated. Furthermore, after the stimulator is improved, it will be an appropriate bioreactor for bone tissue-engineering culture.


Subject(s)
Humans , Bioreactors , Bone and Bones , Cell Biology , Cell Differentiation , Cells, Cultured , Mechanotransduction, Cellular , Osteoblasts , Cell Biology , Metabolism , Stress, Mechanical , Tissue Engineering , Methods , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL