Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 481-489, 2018.
Article in English | WPRIM | ID: wpr-812382

ABSTRACT

Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.


Subject(s)
Animals , Mice , Anti-Inflammatory Agents , Pharmacology , Cyclooxygenase 2 , Genetics , Cytokines , Metabolism , Dendrobium , Chemistry , Gene Expression Regulation, Enzymologic , Inflammation , Drug Therapy , Lipopolysaccharides , Macrophages , Mitogen-Activated Protein Kinases , Genetics , Metabolism , Nitric Oxide , Nitric Oxide Synthase Type II , Genetics , Phosphorylation , Plant Extracts , Pharmacology , Signal Transduction
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 481-489, 2018.
Article in English | WPRIM | ID: wpr-773593

ABSTRACT

Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.


Subject(s)
Animals , Mice , Anti-Inflammatory Agents , Pharmacology , Cyclooxygenase 2 , Genetics , Cytokines , Metabolism , Dendrobium , Chemistry , Gene Expression Regulation, Enzymologic , Inflammation , Drug Therapy , Lipopolysaccharides , Macrophages , Mitogen-Activated Protein Kinases , Genetics , Metabolism , Nitric Oxide , Nitric Oxide Synthase Type II , Genetics , Phosphorylation , Plant Extracts , Pharmacology , Signal Transduction
3.
Chinese journal of integrative medicine ; (12): 25-32, 2017.
Article in English | WPRIM | ID: wpr-301073

ABSTRACT

<p><b>OBJECTIVE</b>To further investigate the {ptin vitro} effects of an osteoprotective herbal formula "ELP" (Herba Epimedii, Fructus Ligustri Lucidi and Fructus Psoraleae) using seropharmacological approach.</p><p><b>METHODS</b>Rats were fed with ELP or its individual component herbs for 2 days. The serum containing the postabsorbed ingredients of the herbal items were collected for cell culture using UMR106 cell, RAW264.7 cell and mesenchymal stem cell (MSC) isolated from the bone marrow of the rats. The effects of the herbal-containing serum on cell toxicity were detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay; bromodeoxyuridine assay was conducted to measure the cell proliferation of UMR106 cell and MSC; cell activity was measured using colorimetric method, and mRNA expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteopontin (OPN) of UMR106 and MSC as well as matrix metalloproteinase 9 (MMP-9), tartrate-resistant acid phosphatase (TRAP) and cathepsin K of RAW264.7 were analyzed using real-time reverse-transcription polymerase chain reaction.</p><p><b>RESULTS</b>ELP and its component serum exhibited no cytotoxic effects on the cells. The ELP-containing serum increased the proliferation of UMR106 cell and MSC by 25.7% and 14.4 %, respectively and the alkaline phosphatase activity of MSC was increased by 42.6%. On the contrary, it inhibited the RAW264.7 cell differentiation by 29.2 %. ELP serum upregulated the Runx2 expression of UMR and MSC by 1.18 fold and 1.27 fold, respectively. It also upregulated ALP and OPN expression in MSC by 1.69- and 2.12-fold, respectively. On the other hand, ELP serum down-regulated MMP-9 and cathepsin K expression of RAW264.7 cell by 0.46- and 0.36-fold, respectively.</p><p><b>CONCLUSIONS</b>The serum of the animals fed with ELP contains active ingredients which are effective in promoting osteogenesis and inhibiting osteoclastogenesis.</p>


Subject(s)
Animals , Male , Mice , Rats , Absorption, Physiological , Bone and Bones , Pathology , Cell Differentiation , Cell Proliferation , Cell Survival , Drugs, Chinese Herbal , Pharmacology , Osteoclasts , Metabolism , Pathology , Osteogenesis , Protective Agents , Pharmacology , RNA, Messenger , Genetics , Metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Serum , Metabolism
4.
Chinese journal of integrative medicine ; (12): 335-343, 2016.
Article in English | WPRIM | ID: wpr-310906

ABSTRACT

<p><b>OBJECTIVE</b>To assess the biological effects of the six-herb mixture Anti-Insomia Formula (AIF) extract using caffeine-induced insomnia Drosophila model and short-sleep mutants.</p><p><b>METHODS</b>Caffeineinduced insomnia wild-type Drosophila and short-sleep mutant flies minisleep (mns) and Hyperkinetic(Y) (Hk(Y)) were used to assess the hypnotic effects of the AIF in vivo. The night time activity, the amount of night time sleep and the number of sleep bouts were determined using Drosophila activity monitoring system. Sleep was defined as any period of uninterrupted behavioral immobility (0 count per minute) lasting > 5 min. Night time sleep was calculated by summing up the sleep time in the dark period. Number of sleep bouts was calculated by counting the number of sleep episodes in the dark period.</p><p><b>RESULTS</b>AIF at the dosage of 50 mg/mL, effectively attenuated caffeine-induced wakefulness (P<0.01) in wild-type Canton-S flies as indicated by the reduction of the sleep bouts, night time activities and increase of the amount of night time sleep. AIF also significantly reduced sleeping time of short-sleep Hk(Y) mutant flies (P<0.01). However, AIF did not produce similar effect in mns mutants.</p><p><b>CONCLUSION</b>AIF might be able to rescue the abnormal condition caused by mutated modulatory subunit of the tetrameric potassium channel, but not rescuing the abnormal nerve firing caused by Shaker gene mutation. This study provides the scientific evidence to support the use of AIF in Chinese medicine for promoting sleep quality in insomnia.</p>


Subject(s)
Animals , Caffeine , Chromatography, High Pressure Liquid , Disease Models, Animal , Drosophila melanogaster , Physiology , Hypnotics and Sedatives , Pharmacology , Therapeutic Uses , Mutation , Genetics , Potassium Channels , Genetics , Sleep , Sleep Initiation and Maintenance Disorders , Drug Therapy , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL