Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nutrire Rev. Soc. Bras. Aliment. Nutr ; 41: 1-34, Dec. 2016. ilus
Article in English | LILACS | ID: biblio-880416

ABSTRACT

Aging is an intricate process modulated by different molecular and cellular events, such as genome instability, epigenetic and transcriptional changes, molecular damage, cell death and senescence, inflammation, and metabolic dysfunction. Particularly, protein quality control (chaperone systems) tends to be negatively affected by aging, thus leading to cellular senescence in metabolic tissues and, as a consequence, to the increasing dissemination of inflammation throughout the body. The heat shock (HS) response and its associated expression of the 70 kDa family of heat shock proteins (HSP70),which are anti-inflammatory molecular chaperones, are found to be markedly decreased during muscle inactivity and aging, while evidence supports the loss of HSP70 as a key mechanism which may drive muscle atrophy, contractile dysfunction, and reduced regenerative capacity. In addition, abnormal stress response is linked with higher incidence of neurodegenerative diseases as well as low-grade inflammatory diseases that are associated with physical inactivity and obesity. Therefore, strategies to increase or, at least, to maintain the levels of HSP70, and its accompanying HS response to stress, are key to reduce biological cell dysfunctions that occur in aging. In this sense, physical exercise is of note as it is the most powerful inducer of the HS response, comparable only to heat stress and fever-like conditions. On the other hand, the amino acidL-glutamine, whose production within the skeletal muscle and liberation into the bloodstream is dependent on muscle activity, is a potentializer of HSP70 expression and HS response, particularly via its entering in hexosamine biosynthetic pathway (HBP). Herein, we discuss the collaborative role of glutamine (and its donors/precursors) and physical exercise (mostly responsible for glutamine release into the circulation) as potential tools to increase HSP70 expression and the HS response in the elderly.


Subject(s)
Humans , Male , Female , Aging/metabolism , Chronic Disease , Exercise , Glutamine/deficiency , HSP70 Heat-Shock Proteins/metabolism
2.
Rev. bras. ciênc. esporte ; 35(4): 1071-1092, out.-dez. 2013. ilus, tab
Article in Portuguese | LILACS | ID: lil-705350

ABSTRACT

Exercícios físicos associados a uma dieta balanceada são importantes fatores para a promoção da saúde. Contudo, a realização de exercícios físicos intensos e prolongados ou de caráter exaustivo pode promover inflamação crônica, overtraining e maior susceptibilidade a infecções. Sendo causa ou consequência, um dos fatores que contribuem para estes efeitos é o aumento exacerbado da síntese de compostos pró-oxidantes, conhecidos como espécies reativas do oxigênio (ERO) e nitrogênio (ERN). O aumento de ERO e ERN pode reduzir a capacidade antioxidante corporal, situação conhecida como estresse oxidativo. O estresse oxidativo tem sido relacionado como promotor de lesões a diversos constituintes celulares, principalmente sobre as membranas, efeito denominado como peroxidação lipídica. Para neutralizar os efeitos das ERO e ERN, o organismo dispõe do sistema de defesa antioxidante, localizado em diferentes compartimentos celulares e com funções diversas. Estudos têm, cada vez mais, demonstrado que o sistema antioxidante pode ser influenciado por intervenções nutricionais específicas, dentre as quais se incluem vitaminas, minerais, flavonóides e aminoácidos. Considerando o fato de muitas pessoas iniciarem a prática de exercícios físicos a cada dia, e que muitas destas ultrapassam seus limites, esta revisão visa abordar os principais sítios de síntese de ERO e ERN durante exercícios físicos, bem como possíveis estratégias nutricionais e seus mecanismos de ação sobre o sistema de defesa antioxidante.


Physical exercises associated with a balanced diet are important factors for health promotion. However intense and prolonged or strenuous exercise may promote chronic inflammation, overtraining and increased susceptibility to infections. Being cause or consequence, one of the factors that contribute to deleterious effects is exacerbated increase in the synthesis of pro-oxidant compounds, known as reactive oxygen species (ROS) and nitrogen species (RNS). The increase of ROS and RNS may reduce the body antioxidant capability, a condition known as oxidative stress. Oxidative stress has been implicated as a promoter of injuries to various cellular constituents, especially on the membranes, an effect known as lipid peroxidation. To attenuate the effects of ROS and RNS, the body has the antioxidant defense system, located in different cellular compartments and with different functions. Studies have increasingly shown that the antioxidant system can be influenced by specific nutritional interventions, among which are included vitamins, minerals, flavonoids and amino acids. Considering the fact that thousands of people engage in the practice of physical exercise every day, and that many of them go beyond their limits, this review aims to address the major sites of synthesis of ROS during exercise and nutrition strategies and their possible mechanisms action on the antioxidant defense system.


Ejercicios físicos asociados con una dieta equilibrada son factores importantes para la promoción de la salud. Sin embargo el ejercicio intenso y prolongado puede promover la inflamación crónica, el sobreentrenamiento y el aumento de la susceptibilidad a las infecciones. Siendo causa o consecuencia, uno de los factores que contribuyen a los efectos nocivos es el aumento exagerado de la síntesis de compuestos pro-oxidantes, conocidos como especies reactivas del oxígeno (ERO) y nitrógeno (ERN). El aumento de ERO y ERN puede reducir la capacidad antioxidante del cuerpo, una condición conocida como estrés oxidativo. El estrés oxidativo ha sido implicado como un promotor de las lesiones de varios componentes celulares, especialmente en las membranas, un efecto conocido como la peroxidación lipídica. Para atenuar los efectos de los ERO y ERN, el cuerpo tiene el sistema de defensa antioxidante, ubicado en diferentes compartimentos celulares y con diferentes funciones. Los estudios han demostrado cada vez que el sistema antioxidante puede ser influenciado por intervenciones nutricionales específicas, entre las que se incluyen vitaminas, minerales, flavonoides y aminoácidos. Teniendo en cuenta el hecho de que miles de personas participan en la práctica de ejercicio físico todos los días, y que muchos de estos van más allá de sus límites, esta revisión tiene como objetivo abordar los principales sitios de síntesis de ERO durante el ejercicio y estrategias de nutrición y sus mecanismos de acción en el sistema de defensa antioxidante.

3.
São Paulo; s.n; s.n; 2013. 169 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-837080

ABSTRACT

A sepse é a principal causa de morte em unidades de terapia intensiva (UTIs) no mundo. A reduzida disponibilidade do aminoácido mais abundante do organismo, a glutamina contribui para o complicado estado catabólico da sepse. No presente estudo investigamos os efeitos da suplementação oral com L-glutamina e L-alanina (GLN+ALA), ambos na norma livre e como dipeptídeo, L-alanil-L-glutamina (DIP), sobre o eixo glutamina-glutationa (GSH), sistema imune, inflamação, proteínas de choque térmico (HSPs) e expressão de genes envolvidos com vias de sinalização proteica em animais endotoxêmicos. Camundongos C57/B6 foram submetidos à endotoxemia (Escherichia coli LPS, 5 mg.kg-1, grupo LPS) e suplementados por 48 horas com L-glutamina (1 g.kg-1) e L-alanina (0,61 g.kg-1, grupo GLN+ALA-LPS) ou 1,49 g.kg-1 de DIP (grupo DIP-LPS). A endotoxemia promoveu depleção da concentração de glutamina no plasma (71%), músculo esquelético (50%) e fígado (49%), quando comparado ao grupo CTRL, sendo restauradas nos grupos DIP-LPS e GLN+ALA-LPS (P<0,05), fato que atenuou a redução da GSH e o estado redox (taxa GSSG/GSH) em eritrócitos circulantes, musculo e fígado (P<0,05). A suplementação em animais endotoxêmicos resultou em uma upregulation dos genes GSR, GPX1 e GCLC no músculo e fígado. A concentração das citocinas plasmáticasTNF-α, IL-6, IL-1ß e IL-10 foi atenuada pelas suplementações, bem como a expressão de mRNAs envolvidos com a resposta inflamatória, ativadas pela via do NF-κB(P<0,05). Concomitantemente, verificou-se aumento da capacidade proliferativa de linfócitos T e B circulantes nos grupos GLN+ALA-LPS e DIP-LPS. A expressão de mRNAs e a concentração de HSPs no tecido muscular foi restabelecida pelas suplementações, contudo, a expressão mRNAs relacionados às vias de síntese e degradação proteica foi somente estimulada no tecido hepático(P<0,05). Os resultados do presente estudo demonstram que a suplementação por via oral com GLN+ALA ou DIP podem ser utilizados clinicamente como métodos nutricionais em reverter o quadro de depressão da disponibilidade de glutamina corporal da sepse induzida por LPS, tendo impacto no eixo glutamina-glutationa, sistema imune e inflamatório


Sepsis is the leading cause of death inintensive care units (ICUs) in the world.The availability ofthe most abundant amino acid in the body, glutamine, is reduced in this situation, fact that contribute to the complicated catabolic state of sepsis. In the present study, we investigated the effects of oral supplementation with L-glutamine and L-alanine (GLN+ALA), both in their free form and as a dipeptide, L-alanyl-L-glutamine (DIP) on glutamine-glutathione axis (GSH), immune and inflammatory system, heat shock proteins (HSPs) expression and gene expressions involved in protein signaling pathways during endotoxemia. C57/B6 mice were subjected to endotoxemia (Escherichia coli LPS, 5 mg.kg-1, LPS group) and supplemented for 48 hours with L-glutamine (1 g.kg-1) plus L-alanine(0.61 g.kg-1, GLN+ALA-LPS group) or 1.49 g.kg-1of DIP (DIP-LPS group). Endotoxemia promoted depletion glutamine concentration in plasma (71%), skeletal muscle (50%) and liver (49%), when compared to the CTRL group, and was restored in the DIP-LPS e GLN+ALA-LPS (P<0.05), fact that attenuate the reduction of GSH and the redox state (GSSG/GSH rate) in circulating erythrocytes, liver and muscle (P<0.05). Supplementations in endotoxemic mice resulted in upregulation of GSR, GCLC and GPX1 genes in muscle and liver. Plasma concentration of TNF-α, IL-6, IL-1ß and IL-10 were attenuated by supplementation as well as the expression of mRNAs involved in the inflammatory response, activated by NFκ-B pathway (P <0.05). At the same time, high proliferative capacity of circulating T and B lymphocytes GLN+ALA-LPS e DIP-LPS were observed. HSPs (protein and mRNAs) and in muscle were restored by the supplements, however, the mRNAs expression related to the synthesis and degradation of protein pathways was only stimulated in the liver (P <0.05). Our results demonstrate that oral supplementation with GLN+ALA or DIP can be used as clinically nutritional methods to reverse the depression of body glutamine availability during sepsis induced by LPS, impacting on the glutamine-glutathione axis, immune and inflammatory system


Subject(s)
Animals , Mice , Endotoxemia/blood , Dipeptides/adverse effects , Glutamine/adverse effects , Immune System/abnormalities , Amino Acids , Glutathione Transferase , Heat-Shock Proteins , Nutritional and Metabolic Diseases
4.
Rev. bras. ciênc. mov ; 18(4): 90-99, out.-dez. 2010. ilus
Article in Portuguese | LILACS | ID: lil-731456

ABSTRACT

Exercícios físicos associados a uma dieta balanceada são importantes fatores para a promoção da saúde. Contudo, a realização de exercícios físicos intensos e prolongados ou de caráter exaustivo podem promover inflamação crônica, overtraining e maior susceptibilidade de infecções. Sendo causa ou consequência, um dos fatores que contribuem para estes efeitos é o aumento exacerbado da síntese de compostos pró-oxidantes, conhecidos como espécies reativas do oxigênio (ERO). O aumento das ERO pode reduzir a capacidade antioxidante corporal, situação conhecida como estresse oxidativo. O estresse oxidativo tem sido relacionado ao aumento de lesões a diversos constituintes celulares, principalmente sobre as membranas, haja vista desencadear um processo de degeneração dos fosfolipídios, conhecido como peroxidação lipídica (PL). Dentre as fontes de síntese de ERO, induzidas pelo exercício físico estão às mitocôndrias, o processo de isquemia e reperfusão tecidual, a inflamação e a exacerbada liberação de íons metais de transição. Quando ocorrido cronicamente, o estresse oxidativo pode reduzir a massa e a força muscular, bem como, aumentar a gravidade de lesões às células, resultando em menor capacidade de recuperação. Deste modo, face essencial o conhecimento dos mecanismos e efeitos das ERO induzidas por exercícios físicos, bem como seus efeitos sobre o sistema antioxidante corporal.


Physical exercises associated with a balanced diet are important factors for health promotion. However intense and prolonged or strenuous exercise may promote chronic inflammation, overtraining and increased susceptibility to infections. Being cause or consequence, one of the factors that contribute to deleterious effects is exacerbated increase in the synthesis of pro-oxidant compounds, known as reactive oxygen species (ROS). The increase of ROS may reduce the body antioxidant capability, a condition known as oxidative stress. Oxidative stress has been implicated as a promoter of injuries to various cellular constituents, especially, on the membranes, due to trigger the degeneration of phospholipids, an effect known as lipid peroxidation. Among the sources for the synthesis of ROS induced by exercise is the mitochondria, the process of tissue ischemia and reperfusion, inflammation and exaggerated release of transition metal ions. When occurred chronically, oxidative stress can reduce muscle mass and strength, as well as increase the severity of injuries to the cells, resulting in lower resilience. Thus, given the essential knowledge of the mechanisms and effects of ROS induced by exercise, as well as its effects on the antioxidant system of body.


Subject(s)
Exercise , Reactive Oxygen Species , Lipid Peroxidation , Oxidative Stress
5.
Sci. med ; 20(4): 270-276, nov. 2010. tab
Article in Portuguese | LILACS | ID: lil-583404

ABSTRACT

Objetivos: identificar a quantidade de gorduras totais, saturadas e trans descritas nos rótulos de biscoitos recheados e verificar se existe associação entre o preço e a quantidade de gorduras trans.Métodos: a amostra foi composta por 25 pacotes de biscoitos recheados de diferentes tipos e marcas, copiando-se de cada rótulo as informações necessárias. Para análise dos resultados foram efetuados cálculos de estatística descritiva, análise de variância e correlação de Spearmann.Resultados: os resultados apontam uma preocupação no consumo desses biscoitos, uma vez que a média dos biscoitos de duas marcas apresentaram valores próximos e que ultrapassam a recomendação máxima de gorduras trans (2,0 g) em uma porção média de 30 g (1,78 g e 2,05 g), com base em uma dieta de 2000 quilocalorias. Verificou-se também associação positiva entre preço e quantidade de gorduras trans (p<0,001) e associação inversa entre preço e quantidade de gordura saturada (p=0,003).Conclusões: quanto maior a quantidade de gorduras trans, menor a quantidade de gordura saturada e menor preço.Sugere-se uma revisão na legislação quanto à inserção da quantidade exata de gorduras trans no rótulo, uma vez que o consumo elevado dessas gorduras está associado a dislipidemias, um fator de risco para doença cardiovascular.


Aims: To identify the amount of total fat, saturated fat and trans fat described on the labels of filled cookies and to verify the association between price and trans fat content.Methods: The sample consisted of 25 packages of different types and brands of filled cookies, obtaining the necessary information from every label. Calculations of descriptive statistics, analysis of variance and correlation of Spearman were carried out.Results: The results call the attention for the consumption of these cookies, since the average of cookies of two brands presented values close and up to the daily recommendation of trans fat (2.0 g) in an average portion of 30 g (1.78 g and 2.05 g), based on a diet of 2000 kilocalories. We have also found a direct relation between price and trans fat value and reverse relation between price and saturated fat value.Conclusion: The more trans fat, the smaller price and quantity of saturate fat were found. We suggest a revision in the legislation regarding the inclusion of the exact amount of trans fat in the labels of every product, because high intakes of these fats are associated with dyslipidemia, which is a risk factor for cardiovascular disease.


Subject(s)
Industrialized Foods , Cookies , Heart Diseases , Food Composition , Food Economics , Fats, Unsaturated , Hydrogenation , Legislation, Food , Fatty Acids, Unsaturated
6.
Rev. bras. med. esporte ; 15(5): 392-397, set.-out. 2009. ilus, tab
Article in Portuguese | LILACS | ID: lil-530153

ABSTRACT

A glutamina é o aminoácido livre mais abundante no plasma e no tecido muscular. Nutricionalmente é classificada como um aminoácido não essencial, uma vez que pode ser sintetizada pelo organismo a partir de outros aminoácidos. A glutamina está envolvida em diferentes funções, tais como a proliferação e desenvolvimento de células, o balanço acidobásico, o transporte da amônia entre os tecidos, a doação de esqueletos de carbono para a gliconeogênese, a participação no sistema antioxidante e outras. Por meio de técnicas de biologia molecular, estudos demonstram que a glutamina pode também influenciar diversas vias de sinalização celular, em especial a expressão de proteínas de choque térmico (HSPs). As HSPs contribuem para a manutenção da homeostasia da célula na presença de agentes estressores, tais como as espécies reativas de oxigênio (ERO). Em situações de elevado catabolismo muscular, como após exercícios físicos intensos e prolongados, a concentração de glutamina pode tornar-se reduzida. A menor disponibilidade desse aminoácido pode diminuir a resistência da célula a lesões, levando a processos de apoptose celular. Por essas razões, a suplementação com L-glutamina, tanto na forma livre, quanto como dipeptídeo, tem sido investigada. Alguns aspectos bioquímicos, metabólicos e mecanismos moleculares da glutamina, bem como os efeitos de sua suplementação, são abordados no presente trabalho.


Glutamine is the most frequent free amino acid in the serum and muscular tissue. Nutritionally, it is classified as a non-essential amino acid, once it can be synthesized by the body from other amino acids. Glutamine is involved in different functions, such as cell proliferation and development, basic acid balance, ammonia transportation between tissues, carbon skeleton donation to the gluconeogenesis, participation in the antioxidant system, among others. Molecular biology techniques show that it may also influence several cell signaling ways, especially the expression of heat shock proteins (HSP). The HSPs contribute to the maintenance of the cellular homeostasis in the presence of stress agents such as oxygen reactive species (ORE). In situations of high cellular catabolism, as after intense and prolonged physical exercises, the glutamine concentration may become reduced. Lower availability of this amino acid may decrease the cell resistance to injuries, leading to cellular apoptosis processes. Therefore, L-glutamine supplementation either in free form or as dipeptide has been investigated. Some biochemical and metabolic aspects, molecular mechanism of glutamine, as well as the effects of its supplementation are approached in the present article.


Subject(s)
Exercise , Glutamine , Immune System , Nutritional Support , Infant Nutritional Physiological Phenomena , Heat-Shock Proteins
7.
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 44(4): 549-562, out.-dez. 2008. tab
Article in Portuguese | LILACS | ID: lil-507907

ABSTRACT

Embora o hormônio do crescimento (GH) seja um dos hormônios mais estudados, vários de seus aspectos fisiológicos ainda não estão integralmente esclarecidos, incluindo sua relação com o exercício físico. Estudos mais recentes têm aumentado o conhecimento a respeito dos mecanismos de ação do GH, podendo ser divididos em: 1) ações diretas, mediadas pela rede de sinalizações intracelulares, desencadeadas pela ligação do GH ao seu receptor na membrana plasmática; e 2) ações indiretas, mediadas principalmente pela regulação da síntese dos fatores de crescimento semelhantes à insulina (IGF). Tem sido demonstrado que o exercício físico é um potente estimulador da liberação do GH. A magnitude deste aumento sofre influência de diversos fatores, em especial, da intensidade e do volume do exercício, além do estado de treinamento. Atletas, normalmente, apresentam menor liberação de GH induzida pelo exercício que indivíduos sedentários ou pouco treinados. Evidências experimentais demonstram que o GH: 1) favorece a mobilização de ácidos graxos livres do tecido adiposo para geração de energia; 2) aumenta a capacidade de oxidação de gordura e 3) aumenta o gasto energético.


Although growth hormone (GH) is one of the most extensively studied hormones, various aspects related to this hormone have not been completely established, including its relationship with physical exercise. Recent studies have contributed to the understanding of the mechanisms of action of GH, which can be divided into 1) direct actions mediated by intracellular signals that are triggered by the binding of GH to its receptor on the plasma membrane, and 2) indirect actions mediated mainly by the regulation of the synthesis of insulin-like growth factors (IGF). Physical exercise has been shown to be a potent stimulator of GH release, especially in young men and women. The magnitude of this increase is influenced by several factors, especially the intensity and volume of exercise, in addition to training status. In this respect, athletes normally present a lower exercise-induced GH release than sedentary or poorly trained individuals. Experimental evidence indicates that GH may 1) favor the mobilization of free fatty acids from adipose tissue for energy generation, 2) increase the capacity of fat oxidation, and 3) increase energy expenditure.


Subject(s)
Humans , Male , Female , Exercise , Human Growth Hormone/metabolism , Lipolysis , Protein Biosynthesis , Biologic Oxidation , Catecholamines/chemistry
8.
Rev. bras. med. esporte ; 13(5): 336-342, set.-out. 2007. ilus
Article in Portuguese | LILACS | ID: lil-483325

ABSTRACT

As espécies reativas de oxigênio (ERO) são normalmente produzidas pelo metabolismo corporal. Todavia, ERO apresentam a capacidade de retirar elétrons de outros compostos celulares, sendo capazes de provocar lesões oxidativas em várias moléculas, fato que leva à perda total da função celular. A realização de exercícios físicos aumenta a síntese de ERO, além de promover lesão muscular e inflamação. Após uma sessão de exercícios físicos, inicia-se normalmente a fase de recuperação, quando são observados diversos efeitos positivos à saúde, incluindo o aumento da resistência a novas lesões induzidas ou não por exercícios, fato que é considerado como um processo "adaptativo". Diversos estudos, porém, relatam que essa recuperação não é alcançada por indivíduos que se submetem a exercícios intensos e prolongados, ou, ainda, que possuem elevada freqüência de treinamento. Alternativas nutricionais têm sido muito estudadas, a fim de reduzir os efeitos promovidos pelo exercício extenuante, dentre as quais está a suplementação com vitamina E, vitamina C, creatina e glutamina. Esta revisão tem como objetivo abordar os aspectos atuais envolvendo a formação das ERO, os processos de lesão celular e inflamação, a adaptação aos tipos de exercício aeróbio e anaeróbio e possíveis intervenções nutricionais.


Oxygen reactive species (ORE) are usually produced by the body metabolism. However, ORE present the ability to remove electrons from other cellular composites, being able to cause oxidative injuries in several molecules. Such fact leads to a total loss of cellular function. Physical exercise practice increases ORE synthesis, besides promoting muscular injury and inflammation. After a physical exercise set, the recovery phase begins, where several effects positive to health are observed, including increase in resistance to new injuries induced or not by exercise, a fact which is considered an 'adaptation' process. Many studies though, have reported that this recovery is not reached by individuals who are submitted to intense and extended exercises, or even, who have high training frequency. Nutritional alternatives have been widely studied, in order to reduce the effects promoted by extenuating exercise, among which vitamin E, vitamin C, creatine and glutamine supplementation is included. This review has the aim to approach the current aspects concerning the ORE formation, the cellular injury and inflammation processes, the adaptation to the kinds of aerobic and anaerobic exercise, besides possible nutritional interventions.

SELECTION OF CITATIONS
SEARCH DETAIL