Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 107-117, 2014.
Article in Chinese | WPRIM | ID: wpr-297511

ABSTRACT

To investigate the murine double minute 2 (MDM2) localization and expression pattern in brain, immunohistochemistry, immunofluorescent staining and immunoblotting methods were used to analyze it in brains of Kunming mice during postnatal development, in brains of adult SD rats and in primarily cultured neurons. The distribution of MDM2 and markers of axon initial segment (AIS) was analyzed by double immunolabeling. In addition, Nutlin-3, a MDM2 antagonist, was injected into hippocampus to analyze the effect on the distribution of MDM2 and AIS protein Nav1.6 in AIS. The results showed that the dynamic expression patterns of MDM2 protein in cerebral cortex and hippocampus of Kunming mice after birth were different. However, it was similar that MDM2 was gradually enriched to AIS during postnatal development, especially after postnatal day 7. The MDM2 in AIS was also observed in different brain regions of adult SD rat brain and in primarily cultured neurons, where MDM2 was colocalized with AIS markers such as AnkG and Nav1.6. In addition, hippocampal injection of Nutlin-3 could induce the loss of the characteristic distribution of MDM2 in AIS. Moreover, Nutlin-3 not only caused a decrease of Nav1.6 distributing in AIS, but also disrupted the polarized distribution of MAP2 in neurons. These results indicate that MDM2 can be enriched at the AIS of adult rodent brain, which might play a role in regulation of the maintenance of AIS function and neuronal polarity.


Subject(s)
Animals , Mice , Rats , Axons , Metabolism , Cerebral Cortex , Metabolism , Hippocampus , Metabolism , Imidazoles , Pharmacology , Metabolism , Neurons , Metabolism , Piperazines , Pharmacology , Proto-Oncogene Proteins c-mdm2 , Metabolism , Rats, Sprague-Dawley
2.
Acta Physiologica Sinica ; (6): 253-262, 2013.
Article in Chinese | WPRIM | ID: wpr-333108

ABSTRACT

Small ubiquitin-related modifiers (SUMOs) belong to an important class of ubiquitin like proteins. SUMOylation is a post-translational modification process that regulates the functional properties of many proteins, among which are several proteins implicated in neurodegenerative diseases. This study was aimed to investigate the changes of SUMO-1 expression and modification, and the relationship between SUMO-1 and Alzheimer's disease (AD) pathology in APP/PS1 transgenic AD mice. Using Western blot, co-immunoprecipitation and immunofluorescent staining methods, the SUMO-1 expression and modification and its relation to tau, amyloid precursor protein (APP) and β-amyloid protein (Aβ) in the 12-month-old APP/PS1 transgenic AD mice were analyzed. The results showed that: (1) Compared with the normal wild-type mice, the expression and modification of SUMO-1 increased in brain of AD mice, which was accompanied by an increase of ubiquitination; (2) In RIPA soluble protein fraction of cerebral cortex, co-immunoprecipitation analysis showed tau SUMOylated by SUMO-1 increased in AD mice, however, AT8 antibody labeled phosphorylated tau was less SUMOylated whereas PS422 antibody labeled phosphorylated tau was similar to control mice; (3) Double immunofluorescent staining showed that SUMO-1 could distributed in amyloid plaques, appearing that some of SUMO-1 diffused in centre of some plaques and some of SUMO-1 co-localized with AT8 labeled phosphorylated tau forming punctate aggregates around amyloid plaques which was concerned as dystrophic neurites, however, less Aβ, APP and PS422 labeled phosphorylated tau were found co-localized with SUMO-1. These results suggest that SUMO-1 expression and modification increase abnormally in transgenic AD mice, which may participate in modulation of the formation of senile plaques and dystrophic neurites.


Subject(s)
Animals , Mice , Alzheimer Disease , Amyloid beta-Peptides , Metabolism , Amyloid beta-Protein Precursor , Metabolism , Brain , Pathology , Mice, Transgenic , Neurites , Pathology , Phosphorylation , Plaque, Amyloid , SUMO-1 Protein , Metabolism , Sumoylation , tau Proteins , Metabolism
3.
Acta Physiologica Sinica ; (6): 142-146, 2003.
Article in Chinese | WPRIM | ID: wpr-318927

ABSTRACT

Recent evidence indicates that the aberrant neuronal expression of mitotic proteins in Alzheimer's disease (AD) brain may be related to AD pathological changes. To investigate whether the toxicity of beta-amyloid protein (Abeta) induces mitotic proteins expression in adult rat brain, we used immunohistochemical and integral optical density analytic method to analyze the adult rat brains, which had been injected with Abeta(25-35) into unilateral amygdala. Results showed that the levels of neurofibrillary tangle (NFT) related phosphorylated tau protein and apoptosis related protein Bax were increased in Abeta(25-35) injected rat brains, meanwhile the aberrantly expression of mitotic protein cyclin A and cyclin B1 was also detected at 7 d after operation, but the level of cyclin A decreased and cyclin B1 disappeared at 21 d. Immunofluorescence double labeling presented that cyclin B1 was partially co-localized with Bax or phosphorylated tau protein, whereas Bax and phosphorylated tau protein seldom co-localized. These results suggest that Abeta causes mitotic protein expression in adult brain neurons, which may die through apoptosis or may be affected by AD NFT-related tau phosphorylation.


Subject(s)
Animals , Male , Rats , Alzheimer Disease , Metabolism , Amygdala , Metabolism , Amyloid beta-Peptides , Toxicity , Cyclin A , Metabolism , Cyclin B1 , Metabolism , Neurons , Metabolism , Peptide Fragments , Toxicity , Phosphorylation , Random Allocation , Rats, Sprague-Dawley , bcl-2-Associated X Protein , Metabolism , tau Proteins , Metabolism
4.
Acta Physiologica Sinica ; (6): 287-293, 2002.
Article in Chinese | WPRIM | ID: wpr-279296

ABSTRACT

To study the relationship between tau hyperphosphorylation and the function of glutamate transporter okadaic acid (OA), a protein phosphatase inhibitor, 20 ng in a 0.5 microl volume, was injected into the frontal cortex of rat brain and immunostaining was used to observe the phosphorylation of tau protein and the expression of excitatory amino acid transporter 1 (EAAT1) in the brain following the injection. The results showed that (1) the neurons in the center of the injection region displayed cytoplasmic shrinkage, swelling, nuclear pyknosis, and dislocation at the early stage, and necrosis appeared 3 d after the injection. However, most neurons in the peri-injected areas showed normal morphological characters with immuno positive reaction for AT8, a tau phosphorylated marker; (2) morphological analysis showed that tau hyperphosphorylation caused by OA treatment was mainly observed in the axons and dendrites of neuronal cells at 6 h in the cell body at 1 d, which brought about dystrophic neurites and neurofibrillary tangle (NFT)-like pathological changes; (3) the induction of glutamate transporter EAAT1 was observed in the involved areas corresponding to that with AT8 immunopositive staining, and the number of EAAT1-positive staining cells markedly increased at 12 h (P<0.01), peaked at 1 d (P<0.001), then decreased at 3 d following the injection. Combined with a confocal laser scanning microscopic analysis, double fluorescent immunostaining showed that EAAT1 positive staining appeared in neurons as well as astrocytes in the peri-injected areas of the frontal cortex. These results demonstrate that OA increases glutamate transporter EAAT1 expression in neurons while it induces tau hyperphosphorylation. However, the mechanism and significance of the induction of glutamate transporter EAAT1 expression remain to be further elucidated.


Subject(s)
Animals , Rats , Astrocytes , Metabolism , Axons , Metabolism , Brain , Cell Biology , Dendrites , Metabolism , Excitatory Amino Acid Transporter 1 , Metabolism , Neurofibrillary Tangles , Pathology , Neurons , Metabolism , Okadaic Acid , Pharmacology , Phosphorylation , tau Proteins , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL