Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): 15-20, 2017.
Article in Chinese | WPRIM | ID: wpr-737297

ABSTRACT

Objective To study the influence of noise under normal and high pressure environment on the cochlea,so as to make up for the defect caused by the lack of testing means to study the noise effect on behavioral characteristics of cochlear hearing by using numerical simulation method.Methods Based on CT scan images of healthy cochlea,and combined with self-programming,the three-dimensional finite element model of the cochlear spiral was established by using PATRAN software.Analysis on flow solid coupling frequency response and transient response was conducted by using NASTRAN software,and the impact of noise under normal and high pressure environment on the cochlea was numerically simulated.Results The calculated results were in agreement with the experimental results reported in the literature,which verified the correctness of the model.When the frequency was lower than 5 kHz,the basement membrane displacement by noise excitation under normal and high pressure environment was basically the same;when the frequency was higher than 5 kHz,the basement displacement by noise excitation under normal environment decreased gradually.Conclusions Under high pressure environment,the high-frequency noise shows a more obvious effect on the basilar membrane.The numerical simulation results can make up for the deficiency in studies about noise effect on characteristics of human cochlear hearing due to the lack of experimental methods,and provide new ideas and theoretical support for targeted experimental study of the cochlea in the future.

2.
Journal of Medical Biomechanics ; (6): 15-20, 2017.
Article in Chinese | WPRIM | ID: wpr-735829

ABSTRACT

Objective To study the influence of noise under normal and high pressure environment on the cochlea,so as to make up for the defect caused by the lack of testing means to study the noise effect on behavioral characteristics of cochlear hearing by using numerical simulation method.Methods Based on CT scan images of healthy cochlea,and combined with self-programming,the three-dimensional finite element model of the cochlear spiral was established by using PATRAN software.Analysis on flow solid coupling frequency response and transient response was conducted by using NASTRAN software,and the impact of noise under normal and high pressure environment on the cochlea was numerically simulated.Results The calculated results were in agreement with the experimental results reported in the literature,which verified the correctness of the model.When the frequency was lower than 5 kHz,the basement membrane displacement by noise excitation under normal and high pressure environment was basically the same;when the frequency was higher than 5 kHz,the basement displacement by noise excitation under normal environment decreased gradually.Conclusions Under high pressure environment,the high-frequency noise shows a more obvious effect on the basilar membrane.The numerical simulation results can make up for the deficiency in studies about noise effect on characteristics of human cochlear hearing due to the lack of experimental methods,and provide new ideas and theoretical support for targeted experimental study of the cochlea in the future.

3.
Journal of Medical Biomechanics ; (6): E015-E020, 2017.
Article in Chinese | WPRIM | ID: wpr-803804

ABSTRACT

Objective To study the influence of noise under normal and high pressure environment on the cochlea, so as to make up for the defect caused by the lack of testing means to study the noise effect on behavioral characteristics of cochlear hearing by using numerical simulation method. Methods Based on CT scan images of healthy cochlea, and combined with self-programming, the three-dimensional finite element model of the cochlear spiral was established by using PATRAN software. Analysis on flow solid coupling frequency response and transient response was conducted by using NASTRAN software, and the impact of noise under normal and high pressure environment on the cochlea was numerically simulated. Results The calculated results were in agreement with the experimental results reported in the literature, which verified the correctness of the model. When the frequency was lower than 5 kHz, the basement membrane displacement by noise excitation under normal and high pressure environment was basically the same; when the frequency was higher than 5 kHz, the basement displacement by noise excitation under normal environment decreased gradually. Conclusions Under high pressure environment, the high-frequency noise shows a more obvious effect on the basilar membrane. The numerical simulation results can make up for the deficiency in studies about noise effect on characteristics of human cochlear hearing due to the lack of experimental methods, and provide new ideas and theoretical support for targeted experimental study of the cochlea in the future.

4.
Journal of Medical Biomechanics ; (6): E040-E044, 2016.
Article in Chinese | WPRIM | ID: wpr-804065

ABSTRACT

Objective To study the effects of high pressure environment on human cochlea, so as to supplement inadequate study on cochlea behavior under high pressure conditions due to insufficient experimental methods, and provide new ideas for the targeted research on cochlea in future. Methods Based on CT scan images of normal human cochlea and combined with self-compiling program and the software PATRAN, a three-dimensional finite element model of spiral cochlea was constructed. The fluid-solid coupling frequency response analysis and transient response analysis were made by using NASTRAN. The effect of high pressure on cochlea was then investigated by numerical simulation. Results The simulated results of ratio of displacement at 12 mm from basilar membrane to that at the oval window were consistent with those reported in the literature, which verified the correctness of the model. In high pressure environment, the amplitude of cochlea basilar membrane at characteristic frequency point would decrease with the pressure increasing. Conclusions High pressure conditions can ultimately lead to the loss of human hearing. The research findings provide the theoretical support for developing high pressure buffer devices in clinic.

SELECTION OF CITATIONS
SEARCH DETAIL