Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Protein & Cell ; (12): 726-742, 2023.
Article in English | WPRIM | ID: wpr-1010774

ABSTRACT

Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction (DGBI), in which the intestinal microbiota plays an important role. Microglia are the "sentinels" of the central nervous system (CNS), which participate in tissue damage caused by traumatic brain injury, resist central infection and participate in neurogenesis, and are involved in the occurrence of various neurological diseases. With in-depth research on DGBI, we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI, especially in individuals with comorbidities of mental disorders, such as irritable bowel syndrome (IBS). This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI. In this review, we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI, especially IBS, and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities.


Subject(s)
Humans , Gastrointestinal Microbiome , Irritable Bowel Syndrome/therapy , Microglia , Brain Diseases , Brain
2.
Journal of Neurogastroenterology and Motility ; : 520-531, 2023.
Article in English | WPRIM | ID: wpr-1001433

ABSTRACT

Background/Aims@#Irritable bowel syndrome (IBS) is accepted as a disorder of gut-brain interactions. Berberine and rifaximin are non-absorbed antibiotics and have been confirmed effective for IBS treatment, but there is still lack of direct comparison of their effects. This study aims to compare the effect of the 2 drugs on the alteration of gut-brain axis caused by gut microbiota from IBS patients. @*Methods@#Germ-free rats received fecal microbiota transplantation from screened IBS patients and healthy controls. After 14 days’ colonization, rats were administrated orally with berberine, rifaximin or vehicle respectively for the next 14 days. The visceral sensitivity was evaluated, fecal microbiota profiled and microbial short chain fatty acids were determined. Immunofluorescence staining and morphological analysis were performed to evaluate microglial activation. @*Results@#Visceral hypersensitivity induced by IBS–fecal microbiota transplantation was relieved by berberine and rifaximin, and berberine increased sucrose preference rate. Microbial α-diversity were reduced by both drugs. Compared with rifaximin, berberine significantly changed microbial structure and enriched Lachnoclostridium. Furthermore, berberine but not rifaximin significantly increased fecal concentrations of acetate and propionate acids. Berberine restored the morphological alterations of microglia induced by dysbiosis, which may be associated with its effect on the expression of microbial gene pathways involved in peptidoglycan biosynthesis.Rifaximin affected neither the numbers of activated microglial cells nor the microglial morphological alterations. @*Conclusions@#Berberine enriched Lachnoclostridium, reduced the expression of peptidoglycan biosynthesis genes and increased acetate and propionate. The absence of these actions of rifaximin may explain the different effects of the drugs on microbiota-gut-brain axis.

SELECTION OF CITATIONS
SEARCH DETAIL