Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 113-125, 2023.
Article in English | WPRIM | ID: wpr-969181

ABSTRACT

It has been reported that stressful events in early life influence behavior in adulthood and are associated with different psychiatric disorders, such as major depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder.Maternal separation (MS) is a representative animal model for reproducing childhood stress. It is used as an animal model for depression, and has well-known effects, such as increasing anxiety behavior and causing abnormalities in the hypothalamicpituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or aggression-like behavior and the number of GABAergic neurons in the hippocampus. Mice were separated from their dams for four hours per day for 19 d from postnatal day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glutamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hippocampus were executed using immunohistochemistry. The maternal segregation group exhibited increased anxiety and aggression in the EPM test and the RI test. GAD67-positive neurons were increased in the hippocampal regions we observed:dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PVpositive neurons were increased in the DG, CA3, presubiculum, and parasubiculum.Consistent with behavioral changes, corticosterone was increased in the MS group, suggesting that the behavioral changes induced by MS were expressed through the effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly through alteration of cytoarchitecture and output of the ventral hippocampus that induces the dysfunction of the HPA axis.

3.
Anatomy & Cell Biology ; : 97-99, 2019.
Article in English | WPRIM | ID: wpr-738806

ABSTRACT

A 78-year-old male cadaver showed bilateral anomalous muscles on the dorsum of the hand. An extensor digitorum brevis manus was noted on the dorsum of the right hand. It originated from the distal end of the radius and the radiocarpal joint ligaments and inserted into the metacarpophalangeal joint of the third digit. On the dorsum of the left hand, an extensor digiti medii proprius was identified. It originated from the distal third of the ulna near the extensor indicis proprius and the interosseous membrane and inserted into the metacarpophalangeal joint of the third digit. Awareness of these combined muscular variation would be helpful in understanding the identification of digital extensors and in requiring careful consideration for the reconstruction surgery of the hand.


Subject(s)
Aged , Humans , Male , Cadaver , Forearm , Hand , Joints , Ligaments , Membranes , Metacarpophalangeal Joint , Muscles , Radius , Ulna
4.
Anatomy & Cell Biology ; : 26-37, 2012.
Article in English | WPRIM | ID: wpr-100676

ABSTRACT

Apoptosis inducing factor (AIF) has been proposed to act as a putative reactive oxygen species scavenger in mitochondria. When apoptotic cell death is triggered, AIF translocates to the nucleus, where it leads to nuclear chromatin condensation and large-scale DNA fragmentation which result in caspase-independent neuronal death. We performed this study to investigate the possibility that, in addition to caspase-dependent neuronal death, AIF induced neuronal death could be a cause of neuronal death in Alzheimer's disease (AD). We have found that AIF immunoreactivity was increased in the hippocampal pyramidal neurons in the Alzheimer brains compared to those of healthy, age-matched control brains. Nuclear AIF immunoreactivity was detected in the apoptotic pyramidal CA1 neurons at the early stage of AD and CA2 at the advanced stage. Nuclear AIF positive neurons were also observed in the amygdala and cholinergic neurons of the basal forebrain (BFCN) from the early stages of AD. The results of this study imply that AIF-induced apoptosis may contribute to neuronal death within the hippocampus, amygdala, and BFCN in early of AD.


Subject(s)
Alzheimer Disease , Amygdala , Apoptosis , Apoptosis Inducing Factor , Brain , Cell Death , Cholinergic Neurons , Chromatin , DNA Fragmentation , Hippocampus , Mitochondria , Neurons , Prosencephalon , Reactive Oxygen Species
5.
Korean Journal of Physical Anthropology ; : 11-21, 2012.
Article in Korean | WPRIM | ID: wpr-144000

ABSTRACT

The aim of this study was to propose new more reliable peripheral nerve transection model to overcome the defect of the traditional sciatic axotomy model by specifically transecting L5 spinal nerve just after emerging from the intervertebral foramen and confining analysis area to the L5 spinal segment. The adult male Sprague-Dawley rats, weighing 300~350 g at the time of surgery, were used for the experiments. Four different experimental groups were used. 1. Sciatic nerve transection (Sc-Tx) group: transect the sciatic nerve in the popliteal fossa where it divided into the common peroneal nerve and tibial nerve. 2. L5 spinal nerve transection (L5-Tx) group: L5 spinal nerve was specifically transected. 3. Suture (Su) group: L5 spinal nerve was transected and immediately sutured. 4. Control group: the same surgical procedure with L5 spinal nerve transection group was performed except for the excision of L5 spinal nerve. To distinguish L5 motoneurons from the other level ones, the animals were received the retrograde tracer, FluoroGold into the axotomized proximal nerve stump. Serial coronal frozen sections at 40 microm thick through the L4 to L6 spinal segment was performed and the resultant total number of sections was about 180. Approximate serial 50 sections (approximately 2 mm) could be considered as the L5 segment based on the number of the fluorescent signals (above 20). L5 spinal segment could be differentiated from L4 and L6 segment based on their morphological characteristics under Cresyl violet stain. In L5-Tx group, at 2 and 4 weeks post-transection, the number of L5 spinal motoneurons was reduced by 8%. Meanwhile, Sc-Tx and Su groups showed no statistically notable changes. In this study, the authors could propose more reliable peripheral nerve axotomy model than the conventional sciatic nerve axotomy model by specifically transecting L5 spinal nerve and confining the investigating area within the L5 spinal segment.


Subject(s)
Adult , Animals , Humans , Male , Rats , Axotomy , Benzoxazines , Frozen Sections , Peripheral Nerve Injuries , Peripheral Nerves , Peroneal Nerve , Rats, Sprague-Dawley , Sciatic Nerve , Spinal Nerves , Sutures , Tibial Nerve , Viola
6.
Korean Journal of Physical Anthropology ; : 11-21, 2012.
Article in Korean | WPRIM | ID: wpr-143993

ABSTRACT

The aim of this study was to propose new more reliable peripheral nerve transection model to overcome the defect of the traditional sciatic axotomy model by specifically transecting L5 spinal nerve just after emerging from the intervertebral foramen and confining analysis area to the L5 spinal segment. The adult male Sprague-Dawley rats, weighing 300~350 g at the time of surgery, were used for the experiments. Four different experimental groups were used. 1. Sciatic nerve transection (Sc-Tx) group: transect the sciatic nerve in the popliteal fossa where it divided into the common peroneal nerve and tibial nerve. 2. L5 spinal nerve transection (L5-Tx) group: L5 spinal nerve was specifically transected. 3. Suture (Su) group: L5 spinal nerve was transected and immediately sutured. 4. Control group: the same surgical procedure with L5 spinal nerve transection group was performed except for the excision of L5 spinal nerve. To distinguish L5 motoneurons from the other level ones, the animals were received the retrograde tracer, FluoroGold into the axotomized proximal nerve stump. Serial coronal frozen sections at 40 microm thick through the L4 to L6 spinal segment was performed and the resultant total number of sections was about 180. Approximate serial 50 sections (approximately 2 mm) could be considered as the L5 segment based on the number of the fluorescent signals (above 20). L5 spinal segment could be differentiated from L4 and L6 segment based on their morphological characteristics under Cresyl violet stain. In L5-Tx group, at 2 and 4 weeks post-transection, the number of L5 spinal motoneurons was reduced by 8%. Meanwhile, Sc-Tx and Su groups showed no statistically notable changes. In this study, the authors could propose more reliable peripheral nerve axotomy model than the conventional sciatic nerve axotomy model by specifically transecting L5 spinal nerve and confining the investigating area within the L5 spinal segment.


Subject(s)
Adult , Animals , Humans , Male , Rats , Axotomy , Benzoxazines , Frozen Sections , Peripheral Nerve Injuries , Peripheral Nerves , Peroneal Nerve , Rats, Sprague-Dawley , Sciatic Nerve , Spinal Nerves , Sutures , Tibial Nerve , Viola
7.
Anatomy & Cell Biology ; : 226-237, 2011.
Article in English | WPRIM | ID: wpr-23475

ABSTRACT

Activating transcription factor 3 (ATF3) and c-Jun play key roles in either cell death or cell survival, depending on the cellular background. To evaluate the functional significance of ATF3/c-Jun in the peripheral nervous system, we examined neuronal cell death, activation of ATF3/c-Jun, and microglial responses in facial motor nuclei up to 24 weeks after an extracranial facial nerve axotomy in adult rats. Following the axotomy, neuronal survival rate was progressively but significantly reduced to 79.1% at 16 weeks post-lesion (wpl) and to 65.2% at 24 wpl. ATF3 and phosphorylated c-Jun (pc-Jun) were detected in the majority of ipsilateral facial motoneurons with normal size and morphology during the early stage of degeneration (1-2 wpl). Thereafter, the number of facial motoneurons decreased gradually, and both ATF3 and pc-Jun were identified in degenerating neurons only. ATF3 and pc-Jun were co-localized in most cases. Additionally, a large number of activated microglia, recognized by OX6 (rat MHC II marker) and ED1 (phagocytic marker), gathered in the ipsilateral facial motor nuclei. Importantly, numerous OX6- and ED1-positive, phagocytic microglia closely surrounded and ingested pc-Jun-positive, degenerating neurons. Taken together, our results indicate that long-lasting co-localization of ATF3 and pc-Jun in axotomized facial motoneurons may be related to degenerative cascades provoked by an extracranial facial nerve axotomy.


Subject(s)
Adult , Animals , Humans , Rats , Activating Transcription Factor 3 , Axotomy , Cell Death , Cell Survival , Facial Nerve , Microglia , Neurons , Peripheral Nervous System , Survival Rate
8.
Anatomy & Cell Biology ; : 116-127, 2011.
Article in English | WPRIM | ID: wpr-159929

ABSTRACT

Neuregulin-1 (NRG1) plays important roles in the development and plasticity of the brain, and has also been reported to exhibit potent neuroprotective properties. Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its role in Alzheimer's disease (AD). AD is characterized by progressive impairment of cognition and behavioral disturbance that strongly correlate with degeneration and death of neurons in the cerebral cortex and limbic brain areas, such as the hippocampus and the amygdala. Here, we show that the ErbB4 and phospho-ErbB4 immunoreactivities were higher intensity in the neurons of the CA1-2 transitional field of AD brains as compared to age-matched controls. Also, ErbB4 expression was increased in the neurons of the cortico medial nucleus amygdala, human basal forebrain and superior frontal gyrus of AD brains. In cerebral cortex and hippocampus of amyloid precursor protein/presenilin 1 double transgenic mice, ErbB4 immunoreactivity significantly increased in comparison to age-matched wild type control. These results suggest that up-regulating of ErbB4 immunoreactivity may involve in the progression of pathology of AD.


Subject(s)
Adult , Animals , Humans , Mice , Alzheimer Disease , Amygdala , Amyloid , Brain , Cerebral Cortex , Cognition , Hippocampus , Mice, Transgenic , Neuregulin-1 , Neurons , Plastics , Prosencephalon
9.
Korean Journal of Physical Anthropology ; : 177-186, 2010.
Article in Korean | WPRIM | ID: wpr-37921

ABSTRACT

In order to present the optimal neuroscience tutorial material for medical students and researchers, this study is aimed to make neuro-digital slide and neuro-atlas based on the histological specimens of human spinal cord and brain stem. Cadavers which had agreed for organ donation for research purpose were used in this study. Brains and spinal cords were extracted within 24 hours after death, and then fixed with 10% neutral buffered formalin. Paraffin blocks were made with the following regions; 8 regions from the spinal cord (the levels of the upper cervical segment, the cervical enlargement, the upper thoracic segment, the mid thoracic segment, the lower thoracic segment, the upper lumbar segment, the lumbar enlargement, the sacral segment), 14 regions from the brain stem (the levels of the spinomedullary junction, the pyramidal decussation, the medial lemniscus decussation, the obex, the mid-olivary medulla, the upper medulla, the pontomedullary junction, the lower pons, the mid pons, the upper pons, the isthmus rhombencephali, the inferior colliculus, the superior colliculus, the posterior commissure). Using virtual microscope software, we made digital neuro-slides which can be used anywhere and anytime regardless of equipment of microscope. To help understanding anatomy and functions of nervous tissue, we also made neuro-atlas based on the digital slide images. As results, the outline and detailed structures of nuclei and tracts are easily discriminated and also matched with marks and nomenclatures of neuro-atlas. Moreover, the cytoarchitecture of each nucleus and histological features can be well distinguished. We hope that this product would be used as a useful neuroscience tutorial material for the medical and paramedical school students, clinical trainees like interns and residents, and also neuroscience researchers.


Subject(s)
Humans , Brain , Brain Stem , Formaldehyde , Inferior Colliculi , Neurosciences , Paraffin , Pons , Pyramidal Tracts , Spinal Cord , Students, Medical , Superior Colliculi , Tissue and Organ Procurement
10.
Anatomy & Cell Biology ; : 332-339, 2010.
Article in English | WPRIM | ID: wpr-93236

ABSTRACT

Neuregulin-1 (NRG1) signaling participates in the synaptic plasticity, maintenance or regulation of adult brain. Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its localization in Alzheimer's disease (AD) brains. We previously reported that ErbB4 immunoreactivity showed regional difference in the hippocampus of age-matched control. In the present paper, immunohistochemical characterization of the distribution of ErbB4 receptor in the hippocampus relative to pathology staging were performed in age-matched control (Braak stage 0, n=6) and AD (Braak stage I/V, n=10). Here, we found that ErbB4 immunoreactivity was significantly increased in apoptotic hippocampal pyramidal neurons in the brains of AD patients, compared to those of age-matched control subjects. In AD brains, ErbB4 immunoreactivity was demonstrated to colocalize with the apoptotic signal Bax in apoptotic hippocampal pyramidal neurons. These results suggest that up-regulation of ErbB4 immunoreactivity in apoptotic neuron may involve in the progression of pathology of AD.


Subject(s)
Adult , Animals , Humans , Alzheimer Disease , Apoptosis , Brain , Hippocampus , Neuregulin-1 , Neurons , Plastics , Up-Regulation
11.
Korean Journal of Anatomy ; : 225-234, 2009.
Article in Korean | WPRIM | ID: wpr-653625

ABSTRACT

Ischemic preconditioning is the earlier stress adaptive response that occurs during repeated episodes of the brief ischemia and reperfusion. It is now well known that this adaptive response can render the neuron more tolerant to the subsequent potential lethal ischemic injury. Although the selective mitochondrial K+ (ATP) channel opener induces protective effects similar to that of ischemic preconditioning, the underlying mechanism is not known yet. The purpose of this study was to investigate the mechanism of neuroprotective effect of diazoxide, a mitochondrial K+ (ATP) channel opener, pretreatment on a focal cerebral ischemic injury of rat brain. Thirthy-four Sprague-Dawley rats were used. Animals were randomly divided into normal control group, middle cerebral artery (MCA) permanent occulusion group (experimental control group), and diazoxide pretreated group. Animals were sacrified at 2 hours or 24 hours after MCA occulusion injury. For inducing the focal cerebral ischemic injury, the left MCA was occuluded by modified Longa's method. Diazoxide (3 mg/kg) was administrated through the femoral artery at 15 minutes earlier to surgical procedures. TTC-stained brain sections of experimental group showed a remarkable infarct injury in the ipsilateral cerebral cortex and striatum. However, the infarction volume of the diazoxide pretreated group was significantly reduced. Accordingly, the number of neurons undergoing eosinophilic degeneration and nuclear chromatin condensation was reduced by diazoxide pretreatment. TUNEL-positive neurons were not detected at 2 hours after MCA permanent occlusion but lots of them were observed at 24 hours. The number of c-fos immunoreactive neurons was remarkably increased at 2 hours following MCA permanent occulusion and reduced to the basal level at 24 hours in both experimental control and diazoxide pretreated group. However, the number of Bcl-2 or pAkt immunoreactivitive neurons of the diazoxide pretreated group outnumbered those of the experimental control group at all timepoints in our experiment. In conclusion, the pretreatment of diazoxide, K+ channel opener, could have europrotective effects on ischemic neurons by upregulating the expression of anti-apoptotic proteins, like Bcl-2 or pAkt.


Subject(s)
Animals , Rats , Apoptosis , Apoptosis Regulatory Proteins , Brain , Brain Ischemia , Cerebral Cortex , Chromatin , Diazoxide , Eosinophils , Femoral Artery , Infarction , Ischemia , Ischemic Preconditioning , Middle Cerebral Artery , Models, Animal , Neurons , Neuroprotective Agents , Rats, Sprague-Dawley , Reperfusion
12.
Korean Journal of Anatomy ; : 235-244, 2009.
Article in English | WPRIM | ID: wpr-653623

ABSTRACT

Neuregulin-1 (NRG1) signaling participates in numerous neurodevelopmental processes. Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its expression in aged human brain. We show that ErbB4 immunoreactivity was shown regional difference in the hippocampus of age-matched control and that the distribution of these molecules was altered in Alzheimer's disease (AD) brains. Immunohistochemical characterization of the distribution of ErbB4 receptor in the hippocampus relative to pathology staging were performed in age-matched control (Braak stage I/II, n=5), early AD (Braak stage III/IV, n=5) and advanced AD(Braak stage V/VI, n=10). The intensity of ErbB4 immunoreactivity was higher in neurons of the CA2 than that in CA1 or CA3 in the age-matched control. Particularly, in the early AD, ErbB4 immunoreactivity was significantly increased in the apoptotic cells of the CA2 field. In the advanced AD, ErbB4 immunostaining was more intense in the apoptotic cell of the CA2 field. In the dentate gyrus (DG), ErbB4-positive granular cell density was gradually increased in proportion to the progression of pathology of AD brains. We have also found that ErbB4 immunostaining was increased in the nucleus, suggesting that the presenilin-dependent cleavage of ErbB4 generates the soluble ErbB4 ICD (intracellular domain) that translocalized to the nucleus. Together, these results provide the immunohistochemical analysis of ErbB4 receptor in the human hippocampus staged by the progression of pathology of AD.


Subject(s)
Adult , Aged , Animals , Humans , Alzheimer Disease , Apoptosis , Brain , Cell Count , Dentate Gyrus , Hippocampus , Neuregulin-1 , Neurons
13.
Korean Journal of Physical Anthropology ; : 279-285, 2009.
Article in English | WPRIM | ID: wpr-98001

ABSTRACT

During the routine gross anatomical dissection, bilateral absence of the musculocutaneous nerve and unilateral brachioradial artery were found in a 76-year-old Korean male cadaver. At the apex of the axilla, the lateral cord of the brachial plexus united into the median nerve without branching off the musculocutaneous nerve. The flexor arm musculatures, normally innervated by the musculocutaneous nerve, were innervated by two separate branches from the median nerve. The distal one continued as the lateral antebrachial cutaneous nerve. In addition, the radial artery of the left arm was originated from the middle one-third of the brachial artery. At bifurcation, it lay deep to the median nerve and crossed it medially. However, at the elbow, it crossed again the median nerve anterolaterally. Just above the cubital fossa, it anastomosed with the brachial artery. The arterial distribution of the right arm was normal. The separate reports which described the absence of the musculocutaneous nerve or brachioradial artery have been reported. However, this combined variation has not been documented until now.


Subject(s)
Aged , Humans , Male , Arm , Arteries , Axilla , Brachial Artery , Brachial Plexus , Cadaver , Elbow , Median Nerve , Musculocutaneous Nerve , Radial Artery
14.
Korean Journal of Anatomy ; : 173-183, 2008.
Article in Korean | WPRIM | ID: wpr-654385

ABSTRACT

It has been demonstrated that some of immediate early genes (IEGs) such as c-Jun or fos are induced immediately following neuronal injury and they play an important role in determining the fate of the injured neurons. Of IEGs, the activating transcription factor 3 (ATF3) is focused by many investigators, because they are expressed in various types of neural insults and have been known to serve a diverse function in both neuronal survival and death. However, little is known about the functional role of ATF3 in ischemic brain injury. So in this study, the authors examined the expression pattern of the activating transcription factor 3 (ATF3) following middle cerebral artery (MCA) occlusion-reperfusion injury. According to the findings obtained by triphenyltetrazolium chloride (TTC) stains, the authors have classified the infarcted area into two regions, the ischemic core region and the ischemic penumbra region. In both regions, many neurons underwent neuronal degeneration, characterized by the shrunken nuclei with eosinophilic perikaryon. The H & E stain also demonstrated the increased number of probable activated astrocytes and microglia in the ischemic brain regions and this was confirmed by GFAP- and OX42-immunohistochemistry. Immunohistochemical study for ATF3 also demonstrated the specific upregulation of ATF3 in the nuclei of neurons under ischemic injury, but not in those of the contralateral regions. Interestingly, the number of the ATF3 positive neurons in the ischemic penumbra regions outnumbered that of the ischemic core regions. Based on many reports that the neuronal death in ischemic penumbra region is caused by programed cell death rather than by necrosis which is main cause of neuronal death in ischemic core region, our results could suggest that the ATF3 is an important IEGs which determine the fate of the ischemic neurons.


Subject(s)
Humans , Activating Transcription Factor 3 , Astrocytes , Brain , Brain Injuries , Brain Ischemia , Cell Death , Coloring Agents , Eosinophils , Genes, Immediate-Early , Microglia , Middle Cerebral Artery , Necrosis , Neurons , Research Personnel , Tetrazolium Salts , Up-Regulation
15.
Korean Journal of Anatomy ; : 413-420, 2005.
Article in Korean | WPRIM | ID: wpr-648770

ABSTRACT

Recently, there has been considerable attention focused on the multipotent progenitor cells existing in ependymal and subependymal layer. However, almost all results have been derived from brain or injured CNS researches. So, the studies on the developmental characteristics of intact spinal ependymal layer have been relatively ignored. In the present study, we labeled rat spinal cord with nestin, bromodeoxyuridine (BrdU), and glial fibrillary acidic protein (GFAP) antibodies in order to track the differentiation and proliferative capacity of rat ependymal layer cells according to their developmental stages. At embryonic day 14 (E14), a number of cells in the spinal ependymal layer, especially constituting the alar and basal plates, showed extensive nestin immunoreactivities (ir). They also showed active proliferative capacities, because many nuclei of nestin-ir cells were also BrdU-ir. From postnatal day 0 (P0), nestin-ir cells were almost completely disappeared, and from P7, no nestin-ir cells could be detected. However, BrdU-ir nuclei continued to be identified until P14. These results suggested that the cells in the spinal ependymal layer retain their proliferative capacity until later stage of development. On the other hand, no GFAP-ir cells could be identified in the ependymal layer in our experimental period.


Subject(s)
Animals , Rats , Antibodies , Brain , Bromodeoxyuridine , Glial Fibrillary Acidic Protein , Hand , Nestin , Spinal Cord , Stem Cells
16.
Korean Journal of Anatomy ; : 317-327, 2004.
Article in Korean | WPRIM | ID: wpr-646131

ABSTRACT

Medial forebrain bundle (MFB) transmits the nigrostriatal dopaminergic (DA) axons, and previously we reported that transection of the MFB causes apotosis-like neurodegeneration of nigral DA neurons. On the other hand, it is likely to occur necrosis at the lesioned site where MFB is cut, due to direct mechanical transection of the brain tissue. To clarify the pathological dynamics of microglia reacting to the two different types of neuronal cell death, immunophenotypic and morphological features of microglia were compared and analyzed in the substantia nigra (SN) and lesioned site of the MFB axotomized rat brain. OX42 (mouse anti-rat CD 11b; pan-microglia marker), ED1 (mouse anti-rat lysosomal enzyme; phagocytic marker), and OX6 (mouse anti-rat MHC II) were used as primary antibodies for immunohistochemical localization of microglia, ED2 (mouse anti-rat macrophage) for macrophages, and anti-tyrosine hydro-xylase (TH) antibody for DA neurons. Quite numerous activated microglia with strong OX42 immunoreactivity were found in the SN at 1 day post-lesion (dpl), but most of them were ED1-and OX6-negative except only a few which were ED1-positive. This phenomenon was thought to be related with the stage of alert, the first step of microglial activation. It could be presumed that microglial phagocytosis may precede MHC II expression, because ED1-positive microglia appeared from 1 dpl while OX6-positive ones from 3 dpl. Number of activated microglia showing strong ED1, OX6 and OX42 immunoreactivity increased significantly by 7 ~14 dpl, and they specifically stick to various parts of dendrites and somas of TH-immunoreactive neurons of the SN. The phagocytic microglia of the SN maintained ramified form although they retained enlarged soma and shortened, thickened processes. The lesioned site was surrounded by numerous microglia showing strong OX42 and ED1 immunoreactivity as early as 1 dpl, indicating that microglial phagocytosis starts earlier in the lesioned site than in the SN. OX42-positive microglia of the lesioned site were ED2-negative, and showed amoeboid morphology already from 1 dpl. The amoeboid microglia became to be enlarged in their soma size by 3 dpl, and fused each other to form clumps within the necrotic zone by 5 ~7 dpl. The entire necrotic zone was completely filled with microglia of obscure outline with strong OX42 and ED1 immuno-reactivity. However, the majority of amoeboid microglia of the lesioned site were OX6-negative except a few. These results clearly demonstrate that activated microglia reacting to apoptotic neurodegeneration show different pathodynamic characteristics in terms of immunological phenotypes and morphology from those reacting to necrotic, mechanical lesion.


Subject(s)
Animals , Rats , Antibodies , Apoptosis , Axons , Axotomy , Brain , Carisoprodol , Cell Death , Dendrites , Hand , Macrophages , Medial Forebrain Bundle , Microglia , Necrosis , Neurons , Phagocytosis , Phenotype , Substantia Nigra
17.
Korean Journal of Anatomy ; : 329-336, 2004.
Article in Korean | WPRIM | ID: wpr-646130

ABSTRACT

Changes in morphology, immunophenotypes and proliferative activity of neuroglia are key features in most forms of CNS pathology. We compared proliferative activity of neuroglial cells in response to two different types of brain injury induced by medial forebrain bundle (MFB) axotomy. In the cannula track where acute necrosis occurs due to mechanical lesion caused by cannula inserted to incise the MFB, many BrdU-immunoreactive (ir) cells appeared around the cannula track already at 1 day post-lesion (1 dpl). Their number significantly increased by 7 dpl and then decreased, but considerable number of BrdU-ir cells was still found at 14 dpl. Some of the BrdU-ir cells were double-labeled with either OX-42 or GFAP. This finding suggests that both microglia and astrocytes are activated and proliferate immediately after the mechanical damage, and the proliferative activity is maintained in a considerable number of these cells by 14 dpl. In general, the main cell type showing BrdU immunoreactivity was amoeboid microglia within the necrotic zone immediately surrounding the cannula track, and was astrocytes in the periphery of the necrotic zone more or less apart from the cannula track. Previously, we reported that MFB axotomy induces apoptosis of dopaminergic (DA) neurons in the substantia nigra (SN). In the SN where axotomized DA neurons undergo apoptosis, only a few BrdU-ir cells were found at 1 dpl. Their number increased gradually from 3 dpl and peaked at 7 dpl, then significantly reduced at 14 dpl. Most of them were double-labeled with OX -42-positive ramified microglia but not with GFAP. This data indicates that microglia but not astrocyte are the cell type that proliferate in response to apoptotic neuronal cell death, and their morphology and proliferative activity are different from those observed in the cannula track. Meanwhile, in the both cannula track and SN, some BrdU-ir cells were thought to be neither GFAP-positive nor OX-42-positive, and thus they were presumed to be infiltrated peripheral immune cells. These results demonstrate that different types of neuronal cell death are accompanied with different neurogilal proliferative activities.


Subject(s)
Apoptosis , Astrocytes , Axotomy , Brain Injuries , Bromodeoxyuridine , Catheters , Cell Death , Medial Forebrain Bundle , Microglia , Necrosis , Neuroglia , Neurons , Pathology , Substantia Nigra
18.
Korean Journal of Anatomy ; : 229-238, 2002.
Article in Korean | WPRIM | ID: wpr-645262

ABSTRACT

The distinguishing morphological features of the ependyma lining ventriculus terminalis in human fetus have suggested that its differentiation would be somewhat delayed or arrested as compared with the ependyma lining central canal. To demonstrate this hypothesis, GFAP was used as a marker to compare the developmental state of the ependyma lining ventriculus terminalis and central canal along fetal age (18 -to 24 -week -old fetuses were investigat-ed). PCNA was also used as a marker to identify whether proliferation potentiality of the ependyma lining ventriculus terminalis lasted longer than that of the ependyma lining central canal as a result of differentiation delay. GFAP -positive ependymal cells were restricted to dorsal plate at central canal but at ventriculus terminalis, many positive cells were identified in all regions compared with the ependyma lining central canal. The number of PCNA -positive ependymal cells lining central canal decreased sharply about the time of 20th week, but at ventriculus terminalis, many ependymal cells continued to express PCNA after 20th week. As a result, we could conclude that differentiation of the ependyma lining ventriculus terminalis is delayed as compared with the ependyma lining central canal. In accordance with its developmental delay, it lasts longer proliferation potentiality than the ependyma lining central canal.


Subject(s)
Humans , Ependyma , Fetus , Gestational Age , Glial Fibrillary Acidic Protein , Proliferating Cell Nuclear Antigen
19.
Journal of the Korean Society of Virology ; : 203-210, 2000.
Article in Korean | WPRIM | ID: wpr-96029

ABSTRACT

No Abstract Available.


Subject(s)
Animals , Orthohantavirus , Indonesia , Murinae , Thailand
20.
Korean Journal of Physical Anthropology ; : 21-30, 2000.
Article in Korean | WPRIM | ID: wpr-110827

ABSTRACT

We observed a case of superficial brachial artery in the left arm of a Korean male cadaver. It was compared with the previously reported ones, and its characteristics were summarized as follows. 1. The superficial brachial artery, which arose from the axillary artery at the superior border of the teres major muscle, passed in front of the medial root of the median nerve and subsequently became to lie on the medial side of the median nerve. This artery crossed the median nerve anteriorly in the middle of the upper arm, then lay lateral to the median nerve in the lower part of the upper arm to the cubital fossa. 2. After giving off the deep brachial artery, several muscular branches and inferior ulnar collateral artery, the superficial brachial artery terminated in the cubital fossa by dividing into its two terminal branches, the radial and ulnar arteries. The superior ulnar collateral artery arose from the deep brachial artery, and the common interosseous artery from the ulnar artery. The course and distribution of the ulnar and radial arteries were normal. 3. It has been reported that a deeper artery, which takes the normal course of the brachial artery and continues as the common interosseous artery, usually coexists with the superficial brachial artery, even if the superficial brachial artery gives off both radial and ulnar arteries in the cubital fossa. But in our case, there was no deeper artery which passes deep to the median nerve. 4. It was presumed that this type of variation is produced by an unusual development of the superficial brachial artery that has been formed during early development as the main artery at the cost of complete degeneration of the normal brachial artery.


Subject(s)
Humans , Male , Arm , Arteries , Axillary Artery , Brachial Artery , Cadaver , Median Nerve , Radial Artery , Ulnar Artery
SELECTION OF CITATIONS
SEARCH DETAIL