Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Veterinary Science ; : e10-2019.
Article in English | WPRIM | ID: wpr-758897

ABSTRACT

Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) sequence used for evaluating traumatic brain injury (TBI). Although SWI is being increasingly used in veterinary medicine, there are no systematic studies regarding its use. We aimed to evaluate TBI lesions by using conventional MRI and SWI in 11 dogs and determine the correlation between clinical status and conventional MRI or SWI findings. The modified Glasgow coma scale (MGCS) at presentation and a previously used MRI grading system (MRGr; grades 1–6) were used to evaluate the brain lesions, and correlations between MGCS score and each MRGr were assessed. Conventional MRI revealed 23 lesions in 11 dogs with variable MGCS scores (range: 11–17). SWI showed comparable findings for all of the lesions except for subdural hemorrhage, and it revealed additional lesions in four dogs. The median MRGr was 2 on both conventional MRI and SWI. The MRGr of the conventional MRI assessments and the MGCS scores showed a significant negative correlation (r = −0.685). In conclusion, SWI had better TBI lesion-detection ability, but conventional MRI had a better correlation with early clinical status and subdural hemorrhage. Thus, a combination of conventional MRI and SWI examinations can improve TBI diagnosis in dogs.


Subject(s)
Animals , Dogs , Brain , Brain Injuries , Diagnosis , Glasgow Coma Scale , Hematoma, Subdural , Magnetic Resonance Imaging , Veterinary Medicine
2.
Journal of Veterinary Science ; : 137-143, 2018.
Article in English | WPRIM | ID: wpr-758770

ABSTRACT

This study describes magnetic resonance imaging (MRI) results and changes in lateral ventricular size over time in a canine ischemic stroke model. T1- and T2-weighted (T1W, T2W) imaging and fluid-attenuated inversion recovery (FLAIR) sequence MRI were performed at 3 h and 3, 8, and 35 days after brain infarct induction. Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping were performed at 8 and 35 days. A total of 29 brain lesions were induced successfully in 12 of 14 beagle dogs. At 3 h, T2W and FLAIR detected hyperintense lesions in three randomly selected dogs. On T1W, all lesions appeared hypointense to isointense at 3 h, isointense (18/29) or hypointense (11/29) at 3 days, hypointense to isointense with peripheral hyperintensity (24/26) at 8 days, and hypointense (18/26) at 35 days. Infarcts on DWI/ADC were hypointense to isointense centrally, with the periphery hyperintense/hyperintense (17/26) at 8 days and hypointense/hyperintense (19/26) at 35 days. A marked increase in lateral ventricular size was observed in dogs with cerebral infarcts. In conclusion, T2W and FLAIR were useful for detecting early stage (3 h to 3 days) brain infarction. T1W and DWI were useful for detecting neuronal necrosis and providing supplemental information for phase evaluation.


Subject(s)
Animals , Dogs , Brain Infarction , Brain , Diffusion , Lateral Ventricles , Magnetic Resonance Imaging , Necrosis , Neurons , Stroke
SELECTION OF CITATIONS
SEARCH DETAIL