Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Protein & Cell ; (12): 4-16, 2023.
Article in English | WPRIM | ID: wpr-971606

ABSTRACT

C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.


Subject(s)
Animals , Humans , Inflammation/metabolism , Lectins, C-Type/metabolism , Mammals/metabolism , Membrane Proteins , Polysaccharides/metabolism
2.
Protein & Cell ; (12): 859-870, 2010.
Article in English | WPRIM | ID: wpr-757432

ABSTRACT

Dendritic-cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN; CD209) has an important role in mediating adherence of Mycobacteria species, including M. tuberculosis and M. bovis BCG to human dendritic cells and macrophages, in which these bacteria can survive intracellularly. DC-SIGN is a C-type lectin, and interactions with mycobacterial cells are believed to occur via mannosylated structures on the mycobacterial surface. Recent studies suggest more varied modes of binding to multiple mycobacterial ligands. Here we identify, by affinity chromatography and mass-spectrometry, four novel ligands of M. bovis BCG that bind to DC-SIGN. The novel ligands are chaperone protein DnaK, 60 kDa chaperonin-1 (Cpn60.1), glyceraldehyde-3 phosphate dehydrogenase (GAPDH) and lipoprotein lprG. Other published work strongly suggests that these are on the cell surface. Of these ligands, lprG appears to bind DC-SIGN via typical proteinglycan interactions, but DnaK and Cpn60.1 binding do not show evidence of carbohydrate-dependent interactions. LprG was also identified as a ligand for DC-SIGNR (L-SIGN; CD299) and the M. tuberculosis orthologue of lprG has been found previously to interact with human toll-like receptor 2. Collectively, these findings offer new targets for combating mycobacterial adhesion and within-host survival, and reinforce the role of DCSIGN as an important host ligand in mycobacterial infection.


Subject(s)
Humans , Amino Acid Sequence , Bacterial Adhesion , Physiology , Bacterial Proteins , Genetics , Metabolism , Cell Adhesion Molecules , Genetics , Metabolism , Chromatography, Affinity , Dendritic Cells , Metabolism , Microbiology , Host-Pathogen Interactions , Genetics , Physiology , In Vitro Techniques , Lectins, C-Type , Genetics , Metabolism , Ligands , Macrophages , Metabolism , Microbiology , Mass Spectrometry , Membrane Proteins , Genetics , Metabolism , Models, Biological , Molecular Chaperones , Genetics , Metabolism , Molecular Sequence Data , Mycobacterium bovis , Genetics , Metabolism , Mycobacterium tuberculosis , Genetics , Metabolism , Virulence , Pulmonary Surfactant-Associated Protein A , Metabolism , Receptors, Cell Surface , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL