Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 1-13, 2010.
Article in English | WPRIM | ID: wpr-337786

ABSTRACT

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels modulate and regulate cardiac rhythm and rate. It has been suggested that, unlike the HCN1 and HCN2 channels, the slower HCN4 channel may not exhibit voltage-dependent hysteresis. We studied the electrophysiological properties of human HCN4 (hHCN4) channels and its modulation by cAMP to determine whether hHCN4 exhibits hysteresis, by using single-cell patch-clamp in HEK293 cells stably transfected with hHCN4. Quantitative real-time RT-PCR was also used to determine levels of expression of HCNs in human cardiac tissue. Voltage-clamp analysis revealed that hHCN4 current (I(h)) activation shifted in the depolarizing direction with more hyperpolarized holding potentials. Triangular ramp and action potential clamp protocols also revealed hHCN4 hysteresis. cAMP enhanced I(h) and shifted activation in the depolarizing direction, thus modifying the intrinsic hHCN4 hysteresis behavior. Quantitative PCR analysis of human sinoatrial node (SAN) tissue showed that HCN4 accounts for 75% of the HCNs in human SAN while HCN1 (21%), HCN2 (3%), and HCN3 (0.7%) constitute the remainder. Our data suggest that HCN4 is the predominant HCN subtype in the human SAN and that I(h) exhibits voltage-dependent hysteresis behavior that can be modified by cAMP. Therefore, hHCN4 hysteresis potentially plays a crucial role in human SAN pacemaking activity.


Subject(s)
Humans , Biological Clocks , Physiology , Cyclic AMP , Physiology , Cyclic Nucleotide-Gated Cation Channels , Physiology , Electrophysiological Phenomena , HEK293 Cells , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Muscle Proteins , Physiology , Patch-Clamp Techniques , Potassium Channels , Sinoatrial Node , Physiology , Transfection
2.
Acta Physiologica Sinica ; (6): 562-570, 2007.
Article in English | WPRIM | ID: wpr-258621

ABSTRACT

Normal rhythm in a healthy human heart originates from the natural biological pacemaker, the sinoatrial (SA) node which locates in the right atrium. SA node dysfunction or atrial-ventricular (AV) conduction block causes improper heart rate (bradycardia). Such dysfunction, if severe enough, is currently treated by implanting an electronic pacemaker which has been well established technically, but there are some limitations and inadequacies. Recently, progress in developing engineered cardiac biopacemakers with use of genes or cells has been made in experimental animal models. The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channel (pacemaker channel) modulates cardiac automaticity via the hyperpolarization-activated cation current (I(f)). HCN genes have been delivered to animal myocardium via viral vectors or HCN-transferred cells for recreating biological pacemakers. Approaches with non-HCN genes or transplantation of beating cells are also novel and have been investigated for generating cardiac biopacers. This article summarizes the progresses in research on recreation of cardiac biopacemakers. Genetically engineered biological pacemaker holds great promise to potentially cure severe bradycardia if critical issues, such as their stability and longevity, are properly solved.


Subject(s)
Humans , Biological Clocks , Physiology , Bradycardia , Therapeutics , Genetic Engineering , Heart , Heart Rate , Heart Ventricles , Ion Channels , Myocardium , Pacemaker, Artificial , Sinoatrial Node
SELECTION OF CITATIONS
SEARCH DETAIL