Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian Pediatr ; 2015 Dec; 52(12): 1029-1033
Article in English | IMSEAR | ID: sea-172342

ABSTRACT

Objective: To study the etiology of neuroregression in children having deficiency of the lysosomal enzymes. Design: Review of medical records. Setting: Specialized Genetic Center. Participants: 432 children aged 3 mo-18 y having regression in a learned skill, selected from 1453 patients referred for diagnostic workup of various Lysosomal storage disorders (LSDs). Methods: Plasma chitotriosidase, quantitative and qualitative glycosaminoglycans, and mucolipidosis-II/II screening followed by confirmatory enzyme study using specific substrate was carried out; Niemann-Pick disease Type-C was studied by fillipin stain method on skin fibroblasts. Results: Total 309 children (71.5%) were diagnosed with different lysosomal storage disorders as the underlying cause of neuroregression. Plasma chitotriosidase was raised in 82 of 135; 64 (78%) of these had various LSDs. 69 out of 90 cases showed high excretion of glycoaminoglycans, and 67 (97.1%) of these were confirmed to have enzyme deficiency for various mucoplysaccharide disorders. While 3/90 children with positive I-cell screening had confirmed mucolipidosis-II/III disease. Among all, glycolipid storage disorders were the most common (50.2%) followed by mucopolysaccharidosis (MPS) (21.7%) and sulphatide degradation defect (17.5%). Neuronal ceroid lipofucinosis-1 & 2 (7.4%), mucolipidosis-II/III (1%), Sialic acid storage disorder (1%), Niemann-Pick disease type-C (1%) and Fucosidosis (0.3%) were observed with less frequency. Most common phenotypes in all subjects were cherry red spot (18.5%), hepatosplenomegaly (17.9%), coarse facies (15%), seizures (13.1%) and skeletal abnormalities (12.14%). Conclusions: Lysosomal storage disorders are considered to be one of the common causes in children with regression in learned skill, dysmorphic features and cherry red spot. Among these, glycolipid storage disorders are the most common, followed by mucopolysaccharidosis.

2.
Indian J Hum Genet ; 2013 Oct-Dec ;19 (4): 475-478
Article in English | IMSEAR | ID: sea-156618

ABSTRACT

Familial isolated growth hormone deficiency (GHD) type 1 is characterized by an autosomal recessive pattern of inheritance with varying degrees of phenotypic severity. We report a proband, with isolated GHD (IGHD) with very early growth arrest and undetectable levels of GH. Homozygous complete deletion of the GH1 gene was identified by real‑time/quantitative polymerase chain reaction (RT/q‑PCR) and confirmed by an independent molecular genetic method; the multiplex ligation‑dependent probe amplification (MLPA) technique. Prenatal diagnosis was offered for the subsequent pregnancy in the mother of our proband. Identical heterozygous deletion of the GH1 gene was detected in both parents. The fetus had a similar homozygous deletion of the GH1 gene. We thus report a unique case with a confirmed mutation in GH1 gene in the proband followed by prenatal detection of the same mutation in the amniotic fluid which to our knowledge hitherto has not been documented from India.


Subject(s)
Fetus/diagnosis , Fetus/genetics , Gene Deletion , Growth Disorders/genetics , Human Growth Hormone/deficiency , Human Growth Hormone/genetics , Humans , Infant , Male , Polymerase Chain Reaction , Prenatal Diagnosis/methods , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL